Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete (2023-11)¶
Zou Mengtong, , Zhang Keying, , Cao Qing, Zhang Lihua, , Zhang Gaoyin, Liu Laibao
Journal Article - Journal of Building Engineering, No. 107988
Abstract
The preparation of 3D-printed rubberized concrete (3DPRC) is crucial for achieving effective resource utilization of waste tires and improved performance of 3D-printed concrete (3DPC). This study presents a systematic investigation into the effects and mechanisms of different rubber aggregate (RA) on 3DPC printability and rheological properties, employing printing and rheological testing. Upon RA incorporation, 3DPC exhibited reduced extrudability and improved buildability, with a more pronounced effect observed at higher dosages and finer particle sizes. Water absorption in the surface cracks of RA increased the concrete's static and dynamic yield stresses, resulting in decreased extrudability and improved buildability. Notably, the heat treatment resulted in the partial closure of cracks on the RA surface, thereby reducing its water absorption rate and achieving a substantial increase in its extrudability, while maintaining buildability without compromise. As determined by flowability and green strength testing of 3DPRC, the suitable flowability range was 159–182 mm and green strength was 8.05–19.14 kPa, which corresponded to the rheological properties (dynamic yield stress: 637.53–899.81 Pa; static yield stress: 1299.55–1935.50 Pa). Overall, this study provides an important theoretical basis and experimental reference for designing and preparing 3DPRC, as well as for evaluating its printability.
¶
31 References
- Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete - Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
3D Printed Concrete with Recycled Glass:
Effect of Glass Gradation on Flexural Strength and Microstructure - Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
Compressive and Microstructural Properties - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste - Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime - Sambucci Matteo, Marini Danilo, Sibai Abbas, Valente Marco (2020-08)
Preliminary Mechanical Analysis of Rubber-Cement Composites Suitable for Additive Process Construction - Sambucci Matteo, Valente Marco, Sibai Abbas, Marini Danilo et al. (2020-07)
Rubber-Cement Composites for Additive Manufacturing:
Physical, Mechanical and Thermo-Acoustic Characterization - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Bos Freek, Salet Theo (2019-06)
Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness - Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
15 Citations
- Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
A State-of-the-Art Review - Wang Hailong, Song Xinlei, Shen Wenbin, Sun Xiaoyan et al. (2025-10)
Evaluation and Optimization of 3D-Printed Concrete Based on Flowability Considering Printability and Micro-Pore Characteristics - Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
Recycled Components in 3D Concrete Printing Mixes:
A Review - Xu Bin, Sun Zhaoyang, Sun Ming, Chen Binmeng (2025-09)
Realizing Rheological Manipulation by Adjusting Initiator Concentrations for In-Situ Polymerization:
Towards 3D Concrete Printing Applications - Lian Hongqian, Ding Tao (2025-09)
Deformation of Inclined Concrete 3D Printing:
A Computational Fluid Dynamics Analysis - Su Yanli, Wu Chang, Shang Jiaqi, Zhang Pu (2025-06)
Mechanical Properties of 3D-Printed High-Ductility Cementitious Composite with Sulphoaluminate Cement and Modified Crumb Rubber - Kumar Sandeep, Kumar Abhishek, Pundir Aakanksha, Dwivedi Ashutosh et al. (2025-06)
Low-Clay Soil as Fine Aggregate in 3D Printed Concrete:
Insights into Fresh and Hardened Properties - Bhattacharjee Biswajoy, Sahu Prakash (2025-05)
Recent Innovations and Implementations of 3D Printing in the Building and Construction Sector - Liu Chuanbei, Zou Mengtong, Chen Xuemei, Deng Yongjun et al. (2025-04)
Feasibility Study of 3D-Printed Rubberized Concrete as a Permanent Formwork:
Mechanical Properties, Interlayer Interface and Durability - Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
A Review - Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete - Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
Advancing Structural Reinforcement in 3D Printed Concrete:
Current Methods, Challenges, and Innovations - Wang Qingwei, Han Song, Yang Junhao, Li Ziang et al. (2024-11)
Optimizing Printing and Rheological Parameters for 3D Printing with Cementitious Materials - Seo Eun-A, Lee Hojae (2024-10)
Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing - Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
BibTeX
@article{zou_liu_zhan_li.2023.EaCoPaRPo3PRC,
author = "Mengtong Zou and Chuanbei Liu and Keying Zhang and Wuqian Li and Qing Cao and Lihua Zhang and Tao Gu and Gaoyin Zhang and Laibao Liu",
title = "Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete",
doi = "10.1016/j.jobe.2023.107988",
year = "2023",
journal = "Journal of Building Engineering",
pages = "107988",
}
Formatted Citation
M. Zou, “Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete”, Journal of Building Engineering, p. 107988, 2023, doi: 10.1016/j.jobe.2023.107988.
Zou, Mengtong, Chuanbei Liu, Keying Zhang, Wuqian Li, Qing Cao, Lihua Zhang, Tao Gu, Gaoyin Zhang, and Laibao Liu. “Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete”. Journal of Building Engineering, 2023, 107988. https://doi.org/10.1016/j.jobe.2023.107988.