Skip to content

Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques (2005-10)

10.1016/j.cemconres.2005.09.005

Voigt Thomas, Malonn Tim, Shah Surendra
Journal Article - Cement and Concrete Research, Vol. 36, Iss. 5, pp. 858-867

Abstract

Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength.

0 References

38 Citations

  1. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  2. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2025-09)
    Influence of Rheology Modifying Admixtures on the Buildability of 3D Printing Cement-Based Mortars
  3. Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
    Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete
  4. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  5. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  6. Chen Yidong, Zhang Yunsheng, Quan Hongzhu, Liu Cheng et al. (2024-10)
    Early-Age Time-Dependent Mechanical Properties of 3D Printed Concrete with Coarse Aggregates
  7. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  8. Sando Mona, Stephan Dietmar (2024-06)
    The Development of a Fly-Ash-Based Geopolymer for Extrusion-Based 3D Printing, Along with a Printability Prediction Method
  9. Negron-McFarlane Christian, Kreiger Eric, Barna Lynette, Stynoski Peter et al. (2024-04)
    Development of In-Place Test-Methods for Evaluating Printable Concretes
  10. Mahanthi S., Kantarao M., Uma Maheswara Rao S., Niharika M. et al. (2024-02)
    Sustainable Mix-Design for 3D Printable Concrete
  11. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  12. Šána Vladimír, Litoš Jiří, Kolář Karel (2023-10)
    Mechanical Properties of the New Cement Composite Mixture Appropriate for Robotic Processing
  13. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  14. Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
    Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test
  15. Najvani Mohammad, Murcia Daniel, Soliman Eslam, Taha Mahmoud (2023-06)
    Early-Age Strength and Failure Characteristics of 3D Printable Polymer Concrete
  16. Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
    Research Status and Prospect of Machine Learning in Construction 3D Printing
  17. Medicis Carolina, Gonzalez Sergio, Alvarado Yezid, Vacca Hermes et al. (2022-09)
    Mechanical Performance of Commercially Available Premix UHPC-Based 3D Printable Concrete
  18. Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
    Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime
  19. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  20. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  21. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  22. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction
  23. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  24. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  25. Harbouz Ilhame, Rozière Emmanuel, Yahia Ammar, Loukili Ahmed (2020-07)
    Physico-Chemical Characterization at Early-Age of 3D Printed Mortar
  26. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  27. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  28. Ivanova Irina, Mechtcherine Viktor (2020-01)
    Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials
  29. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  30. Li Zhijian, Wang Li, Ma Guowei (2019-02)
    Method for the Enhancement of Buildability and Bending-Resistance of Three-Dimensional-Printable Tailing Mortar
  31. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  32. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  33. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  34. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  35. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  36. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  37. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  38. Carlo Tony, Khoshnevis Behrokh, Chen Yong (2013-11)
    Manufacturing Additively, with Fresh Concrete

BibTeX
@article{voig_malo_shah.2006.GaEACSoECMMwCTaUT,
  author            = "Thomas Voigt and Tim Malonn and Surendra P. Shah",
  title             = "Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques",
  doi               = "10.1016/j.cemconres.2005.09.005",
  year              = "2006",
  journal           = "Cement and Concrete Research",
  volume            = "36",
  number            = "5",
  pages             = "858--867",
}
Formatted Citation

T. Voigt, T. Malonn and S. P. Shah, “Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques”, Cement and Concrete Research, vol. 36, no. 5, pp. 858–867, 2006, doi: 10.1016/j.cemconres.2005.09.005.

Voigt, Thomas, Tim Malonn, and Surendra P. Shah. “Green and Early-Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques”. Cement and Concrete Research 36, no. 5 (2006): 858–67. https://doi.org/10.1016/j.cemconres.2005.09.005.