Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing (2021-01)¶
Liu Miao, Zhang Qiyun, Tan Zhendong, , ,
Journal Article - Archives of Civil and Mechanical Engineering, Vol. 21, Iss. 1
Abstract
3D concrete printing has received widespread attention and been developed for an increasing number of applications. However, a major challenge facing this technology is an effective way to introduce reinforcement into continuously deposited cementitious material. In this study, different layers of steel wire meshes (SWM) are employed to reinforce the 3D printed structures to improve mechanical capacities. Both destructive (bending, compression and splitting) and non-destructive (using electro-mechanical impedance) tests are employed to characterize the impact of this reinforcement method. The damage accumulation process is measured through the smart PZT patches based on the electro-mechanical impedance method. The results indicate that reinforced 3D-printed components with SWM change their failure modes from brittle to ductile. The peak loads are increased by 59.2–173.3% and the deflection capacity can be increased by more than 11 times than the non-reinforced one. Different mechanical responses of print and cast samples under compression are studied. The splitting tensile strength of wire mesh reinforced concrete is also measured, which is 43.7% higher than the non-reinforced sample. The calculating methods of the cracking moment and ultimate moment of steel wire mesh reinforced 3D printed concrete are presented. Comparison between the calculated and the experimental results verifies the effectiveness in predicting the ultimate moment. Experimental results show that it is feasible and effective to employ steel wire mesh for strength and toughness enhancement of 3D printed structures.
¶
13 References
- Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
3D Printing of Earth-Based Materials:
Processing Aspects - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
37 Citations
- Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
Technique Development and Bond Behavior Characterization - Deng North, Wang Sizhe, Li Mingyang, Wang Xiangyu et al. (2025-12)
A Perforated Strip-Based Three-Dimensional Reinforcement Strategy for 3D Printed Concrete:
Flexural Testing of Beams as a Proof of Concept - Slavcheva Galina, Levchenko Artem, Artamonova Olga, Karakchi-Ogli Davut et al. (2025-12)
Mechanical Behavior and Reinforcement Efficiency of 3D Printed Concrete Under Compression, Tension, and Bending - Bates Rhys, Aslani Farhad (2025-11)
Performance of 3D-Printed Concrete Columns with GFRP Rebars Under Axial Compression - Ali Muhammad, Qian Hui, Umar Muhammad, Fenglin Liu et al. (2025-10)
Rheological, Mechanical, and Self-Recovery Performance of 3D-Printed ECC Reinforced with Shape Memory Alloy Fibers - Lin Manfang, Ding Yao, Yu Fan, Li Lingzhi et al. (2025-08)
Synergistic Strengthening of 3D‑printed ECC Beams Through Steel-Wire Mesh and Interfaces Treatments - Raza Saim, Sakha Mahsa, Hassan Zohaib, Manshadi Behzad et al. (2025-05)
Flexural Behavior of Stay-in-Place Load-Bearing 3D-Printed Concrete Formwork for Ribbed Slabs - Shahzad Qamar, Li Fangyuan (2025-03)
Influence of Concrete Interfaces on the Damage and Pull-Out Behavior of 3D-Printed Concrete Structures - Chen Meng, Yu Kanghao, Zhang Tong, Wang Yuting (2025-01)
Characterizing and Modelling the Bond-Slip-Behavior of Steel-Bars in 3D Printed Engineered Cementitious Composites - Guan Jingyuan, Wang Li, Wan Qian, Ma Guowei (2025-01)
Material and Structural Fatigue-Performance of 18m Span Reinforced Arch Structure Manufactured by 3D Printing Concrete as Permanent Formwork - Lyu Qifeng, Wang Yalun, Chen Dongjian, Liu Shiyuan et al. (2025-01)
Energy Storage Properties and Mechanical Strengths of 3D Printed Porous Concrete Structural Supercapacitors Reinforced by Electrodes Made of Carbon-Black-Coated Ni Foam - Lin Manfang, Li Lingzhi, Jiang Fangming, Ding Yao et al. (2024-11)
Automated Reinforcement of 3D Printed Engineered Cementitious Composite Beams - Ma Wei, Wang Guosheng, Zhou Yaya, Xu Qinghu et al. (2024-09)
Polyacrylonitrile-Fiber-Reinforced 3D Printed Concrete:
Effects of Fiber Length and Content - Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
A Review and Bibliometric Analysis - Kladovasilakis Nikolaos, Pemas Sotirios, Pechlivani Eleftheria (2024-07)
Computer-Aided Design of 3D Printed Clay-Based Composite Mortars Reinforced with Bio-Inspired Lattice Structures - Pal Biswajit, Chourasia Ajay, Kapoor Ashish (2024-01)
Intricacies of Various Printing Parameters on Mechanical Behavior of Additively Constructed Concrete - Sedghi Reza, Rashidi Kourosh, Hojati Maryam (2024-01)
Large-Scale 3D Wall Printing:
From Concept to Reality - Pham Thi, Trinh Duy, Do Trong, Huang Jie (2023-12)
Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced - Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers - Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete - Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
A Novel Approach for 3D Printing Fiber-Reinforced Mortars - Pham Thi, Trinh Duy, Nguyen Thi, Do Trong et al. (2023-06)
Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers - Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
Framework of 3D Concrete Printing Potential and Challenges - Bester Frederick, Kruger Jacques, Zijl Gideon (2023-03)
Rivet Reinforcement for Concrete Printing - Raphael Benny, Senthilnathan Shanmugaraj, Patel Abhishek, Bhat Saqib (2023-01)
A Review of Concrete 3D Printed Structural Members - Cao Xiangpeng, Yu Shiheng, Wu Shuoli, Cui Hongzhi (2022-11)
Experimental Study of Hybrid Manufacture of Printing and Cast-in-Process to Reinforce 3D Printed Concrete - Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Hebert Marc et al. (2022-09)
Studying Steel-Fiber-Reinforcement for 3D Printed Elements and Structures - Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
Bond Behavior Between Steel-Bars and 3D Printed Concrete:
Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating - Wan Qian, Wang Li, Ma Guowei (2022-07)
Continuous and Adaptable Printing Path Based on Transfinite Mapping for 3D Concrete Printing - Kazadi Billy, Yao Liang, Wang Li (2022-04)
In-Process Reinforcement Method for 3D Concrete Printing:
Status, Potentials and Challenges - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
A Review - Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2022-02)
Experimental Investigation on Inner- and Inter-Strip Reinforcements for 3D Printed Concrete via Automatic Staple Inserting Technique - Ding Tao, Qin Fei, Xiao Jianzhuang, Chen Xiaoming et al. (2022-01)
Experimental Study on the Bond Behavior Between Steel-Bars and 3D Printed Concrete - Park Jihun, Bui The, Lee Jungwoo, Joh Changbin et al. (2021-11)
Inter-Layer Strength of 3D Printed Mortar Reinforced by Postinstalled Reinforcement - Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Liu Miao, Huang Yimiao, Wang Fang, Sun Junbo et al. (2021-05)
Tensile and Flexural Properties of 3D Printed Jackets-Reinforced Mortar
BibTeX
@article{liu_zhan_tan_wang.2021.IoSWMRMf3CP,
author = "Miao Liu and Qiyun Zhang and Zhendong Tan and Li Wang and Zhijian Li and Guowei Ma",
title = "Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing",
doi = "10.1007/s43452-021-00183-w",
year = "2021",
journal = "Archives of Civil and Mechanical Engineering",
volume = "21",
number = "1",
}
Formatted Citation
M. Liu, Q. Zhang, Z. Tan, L. Wang, Z. Li and G. Ma, “Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing”, Archives of Civil and Mechanical Engineering, vol. 21, no. 1, 2021, doi: 10.1007/s43452-021-00183-w.
Liu, Miao, Qiyun Zhang, Zhendong Tan, Li Wang, Zhijian Li, and Guowei Ma. “Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing”. Archives of Civil and Mechanical Engineering 21, no. 1 (2021). https://doi.org/10.1007/s43452-021-00183-w.