Damage-Rheology Model for Predicting 3D Printed Concrete Buildability (2023-08)¶
Wang Qing, , Li Jie
Journal Article - Automation in Construction, Vol. 155, No. 105037
Abstract
Insufficient buildability during printing can result in structural instability of three-dimensional (3D) printed concrete. A damage-rheology model was developed to predict such structural failure by simulating the early-age behavior of 3D printed concrete. The model captures essential characteristics of early-age concrete, including structural build-up, softening damage, irreversible deformation, and creep effect. Based on continuum damage mechanics, the model integrates the damage-plasticity theory and the Burgers model. A time-dependent thixotropic model is used to characterize the structural build-up behavior, considering the evolution of material properties as functions of the structural parameter. The model is systematically validated by comparing its predictions with uniaxial creep, straight-wall printing, and hollow-cylinder printing tests. The study investigates the effect of early-age creep on structural responses. Numerical results demonstrate the ability of the model to accurately predict the buildability of early-age 3D printed concrete.
¶
22 References
- Chang Ze, Zhang Hongzhi, Liang Minfei, Schlangen Erik et al. (2022-07)
Numerical Simulation of Elastic Buckling in 3D Concrete Printing Using the Lattice-Model with Geometric Non-Linearity - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Esposito Laura, Casagrande Lorenzo, Menna Costantino, Asprone Domenico et al. (2021-10)
Early-Age Creep Behavior of 3D Printable Mortars:
Experimental Characterisation and Analytical Modelling - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Khoshnevis Behrokh, Dutton Rosanne (1998-01)
Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Lee Keon-Woo, Lee Hojae, Choi Myoungsung (2022-07)
Correlation Between Thixotropic Behavior and Buildability for 3D Concrete Printing - Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
Buildability Prediction of 3D Printed Concrete at Early-Ages:
A Numerical Study with Drucker-Prager-Model - Liu Xuanting, Sun Bohua (2021-11)
The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
Digital Design Computing and Modelling for 3D Concrete Printing - Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
Assessing the Fresh Properties of Printable Cement-Based Materials:
High-Potential Tests for Quality-Control - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Wolfs Robert, Bos Freek, Salet Theo (2018-06)
Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-06)
Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing - Wolfs Robert, Suiker Akke (2019-06)
Structural Failure During Extrusion-Based 3D Printing Processes - Yao Xiaofei, Lyu Xin, Sun Junbo, Wang Bolin et al. (2023-03)
AI-Based Performance Prediction for 3D Printed Concrete Considering Anisotropy and Steam-Curing Condition
11 Citations
- Saravanan Pradeep, Ramaswamy Ananth (2025-11)
Modelling Buildability Performance of 3D Printable Cementitious Materials Using Chemo-Mechanical Model - Lian Hongqian, Ding Tao (2025-09)
Deformation of Inclined Concrete 3D Printing:
A Computational Fluid Dynamics Analysis - Saravanan Pradeep, Ramaswamy Ananth (2025-09)
Early Age Creep Behavior of 3D Printable Mortar:
Hydration and Viscoelasticity Coupling Model - Yang Shuai, Li Fei, Lu Ya, Xu Xiaoming et al. (2025-08)
Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization - Chen Qinbin, Barbat Gabriel, Cervera Miguel (2025-06)
Finite Element Buildability Analysis of 3D Printed Concrete Including Failure by Elastic Buckling and Plastic Flow - Kurniati Eka, Kim Heejeong (2025-04)
Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume - Park Ji-seul, Jeong Seung-Su, Hong Seungkee, Lee Seohyung et al. (2025-02)
Mechanical Modeling for Prediction of Structural Stability of Cylindrical Structures During 3D Concrete Printing - Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties - Seo Eun-A, Lee Hojae (2024-10)
Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing - Gao Huaxing, Jin Lang, Chen Yuxuan, Chen Qian et al. (2024-05)
Rheological Behavior of 3D Printed Concrete:
Influential Factors and Printability Prediction Scheme - Lyu Qifeng, Wang Yalun, Dai Pengfei (2024-05)
Multilayered Plant-Growing Concrete Manufactured by Aggregate-Bed 3D Concrete Printing
BibTeX
@article{wang_ren_li.2023.DRMfP3PCB,
author = "Qing Wang and Xiaodan Ren and Jie Li",
title = "Damage-Rheology Model for Predicting 3D Printed Concrete Buildability",
doi = "10.1016/j.autcon.2023.105037",
year = "2023",
journal = "Automation in Construction",
volume = "155",
pages = "105037",
}
Formatted Citation
Q. Wang, X. Ren and J. Li, “Damage-Rheology Model for Predicting 3D Printed Concrete Buildability”, Automation in Construction, vol. 155, p. 105037, 2023, doi: 10.1016/j.autcon.2023.105037.
Wang, Qing, Xiaodan Ren, and Jie Li. “Damage-Rheology Model for Predicting 3D Printed Concrete Buildability”. Automation in Construction 155 (2023): 105037. https://doi.org/10.1016/j.autcon.2023.105037.