Skip to content

Concrete 3D Printing (2023-03)

Challenges and Opportunities for the Construction Industry

10.1007/978-3-030-95798-8_12

 Kazemian Ali, Seylabi Elnaz, Ekenel Mahmut
Contribution - Innovation in Construction, pp. 277-299

Abstract

Construction 3D printing holds great potential for pioneering a digital transformation in the construction industry. This automated construction technology is introduced in this chapter, and relevant developments and advancements are presented. Next, major existing challenges of widespread adoption of this technology by the construction industry are discussed in detail. These obstacles and areas of uncertainty include the structural performance of 3D-printed elements, concrete reinforcement, process reliability and limitations, and regulatory challenges. Finally, different application domains and new possibilities which could be realized by this newconstructionmethod are discussed in detail to provide a comprehensive overview of the extrusion-based concrete 3D printing technology and its implications for the future of the construction industry.

49 References

  1. Ahmed Zeeshan, Bos Freek, Brunschot Maikel, Salet Theo (2020-02)
    On-Demand Additive Manufacturing of Functionally Graded Concrete
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  4. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  5. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  6. Bos Freek, Ahmed Zeeshan, Wolfs Robert, Salet Theo (2017-06)
    3D Printing Concrete with Reinforcement
  7. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  8. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2018-09)
    Large-Scale Testing of Digitally Fabricated Concrete (DFC) Elements
  9. Buswell Richard, Kinnell Peter, Xu Jie, Hack Norman et al. (2020-07)
    Inspection Methods for 3D Concrete Printing
  10. Chougan Mehdi, Ghaffar Seyed, Jahanzat Mohammad, Albar Abdulrahman et al. (2020-04)
    The Influence of Nano-Additives in Strengthening Mechanical Performance of 3D Printed Multi-Binder Geopolymer Composites
  11. Claßen Martin, Ungermann Jan, Sharma Rahul (2020-05)
    Additive Manufacturing of Reinforced Concrete:
    Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement
  12. Davtalab Omid, Kazemian Ali, Khoshnevis Behrokh (2018-01)
    Perspectives on a BIM-Integrated Software Platform for Robotic Construction through Contour Crafting
  13. Davtalab Omid, Kazemian Ali, Yuan Xiao, Khoshnevis Behrokh (2020-10)
    Automated Inspection in Robotic Additive Manufacturing Using Deep Learning for Layer Deformation Detection
  14. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  15. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  16. Ghaffar Seyed, Mullett Paul (2018-09)
    Commentary:
    3D Printing Set to Transform the Construction Industry
  17. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  18. Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
    Rheological Property Criteria for Buildable 3D Printing Concrete
  19. Kazemian Ali, Khoshnevis Behrokh (2021-08)
    Real-Time Extrusion-Quality-Monitoring-Techniques for Construction 3D Printing
  20. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  21. Kazemian Ali, Yuan Xiao, Davtalab Omid, Khoshnevis Behrokh (2019-01)
    Computer-Vision for Real-Time Extrusion-Quality-Monitoring and Control in Robotic Construction
  22. Khoshnevis Behrokh, Bekey George (2002-09)
    Automated Construction Using Contour Crafting:
    Applications on Earth and Beyond
  23. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  24. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  25. Khoshnevis Behrokh, Yuan Xiao, Zahiri Behnam, Zhang Jing et al. (2016-08)
    Construction by Contour Crafting Using Sulfur-Concrete with Planetary Applications
  26. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  27. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  28. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  29. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  30. Lloret-Fritschi Ena, Scotto Fabio, Gramazio Fabio, Kohler Matthias et al. (2018-09)
    Challenges of Real-Scale Production with Smart Dynamic Casting
  31. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  32. Lloret-Fritschi Ena, Wangler Timothy, Gebhard Lukas, Mata-Falcón Jaime et al. (2020-05)
    From Smart Dynamic Casting to a Growing Family of Digital Casting Systems
  33. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  34. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  35. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  36. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  37. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  38. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  39. Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
    Additive Manufacturing in Construction:
    A Review on Processes, Applications, and Digital Planning Methods
  40. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  41. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  42. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  43. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  44. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  45. Vantyghem Gieljan, Boel Veerle, Corte Wouter, Steeman Marijke (2018-09)
    Compliance, Stress-Based and Multi-Physics Topology-Optimization for 3D Printed Concrete Structures
  46. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  47. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  48. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  49. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

10 Citations

  1. Liu Han, Sousa Israel, Laflamme Simon, Doyle Shelby et al. (2025-09)
    Embedment of 3D Printed Self-Sensing Composites for Smart Cementitious Components
  2. Philip Nivin, Jędrzejewska Agnieszka, Mathew Ashitta, Uthuppan Susan (2025-09)
    Steel Fiber Reinforcement for Improved Structural Performance and Durability of 3D Printed Mortar in Marine Environments
  3. Aydin Tolga, Sandalci Ilgin, Aydin Eylül, Kara Burhan et al. (2025-08)
    Investigation of Bacterial Cells and Clays as Rheology Modifiers in 3D Concrete Printing
  4. Bajwa Asad, Flemmer Claire, Samarasinghe Don, Bao Ding et al. (2025-07)
    Sustainability of 3D Printing Technology:
    A Review on Research Trends and Developments
  5. Alkhawaldeh Ayah, Alhassan Mohammad, Sawalha Ansam, Betoush Nour et al. (2025-06)
    Integration of 3D Printing and Machine Learning in Sustainable Construction:
    Feasibility and Challenges
  6. Martin Michael, Banijamali Kasra, Gilbert Hunter, Mascarenas David et al. (2024-09)
    LiDAR-Based Real-Time Geometrical Inspection for Large-Scale Additive Manufacturing
  7. Giwa Ilerioluwa, Kazemian Ali, Gopu Vijaya, Rupnow Tyson (2024-07)
    A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements
  8. Lin Xiqiang, Wang Hailong, Sun Xiaoyan, Kikhia Wael et al. (2024-07)
    Construction Technology of the Curved Mars House Digital Hotel Project in China Using Concrete 3D Printing
  9. Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
    Automated Reinforcement During Large-Scale Additive Manufacturing:
    Structural-Assessment of a Dual Approach
  10. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index

BibTeX
@inproceedings{kaze_seyl_eken.2022.C3P,
  author            = "Ali Kazemian and Elnaz Seylabi and Mahmut Ekenel",
  title             = "Concrete 3D Printing: Challenges and Opportunities for the Construction Industry",
  doi               = "10.1007/978-3-030-95798-8_12",
  year              = "2022",
  pages             = "277--299",
  booktitle         = "Innovation in Construction: A Practical Guide to Transforming the Construction Industry",
  editor            = "Seyed Hamidreza Ghaffar and Paul Mullett and Eujin Pei and John Roberts",
}
Formatted Citation

A. Kazemian, E. Seylabi and M. Ekenel, “Concrete 3D Printing: Challenges and Opportunities for the Construction Industry”, in Innovation in Construction: A Practical Guide to Transforming the Construction Industry, 2022, pp. 277–299. doi: 10.1007/978-3-030-95798-8_12.

Kazemian, Ali, Elnaz Seylabi, and Mahmut Ekenel. “Concrete 3D Printing: Challenges and Opportunities for the Construction Industry”. In Innovation in Construction: A Practical Guide to Transforming the Construction Industry, edited by Seyed Hamidreza Ghaffar, Paul Mullett, Eujin Pei, and John Roberts, 277–99, 2022. https://doi.org/10.1007/978-3-030-95798-8_12.