Testing Mortars for 3D Printing (2024-10)¶
Bao Ta, Yeakleang Muy, ,
Journal Article - Materials, Vol. 17, Iss. 20
Abstract
Three-dimensionally printed concrete is a transformative technology that addresses housing shortages due to population growth and enables innovative architectural designs. The objective of this study is to investigate the connection between a conventional test and the rheological properties of 3D-printed concrete. A more precise assessment of material quality based on traditional evaluation techniques is proposed. Standard tests are conducted to evaluate the consistency of 3D-printed concrete materials. Complementarily, a rheometer is employed to accurately measure key rheological properties, thereby establishing a link with empiric testing methodologies. The correlation between the flow table test and rheological coefficients, such as yield stress and viscosity, has been identified as the most effective in basic experiments for evaluating material behavior. This approach allows for a preliminary assessment of printability without the need for additional complex equipment. The study has successfully established a relationship between flow table tests and rheological parameters. However, further research involving a broader range of materials and print-test experiments is essential to enhance the correlation between other conventional testing methods and rheometer results.
¶
52 References
- Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Choi Myoungsung, Roussel Nicolas, Kim Youngjin, Kim Jinkeun (2013-01)
Lubrication-Layer Properties During Concrete Pumping - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Gao Yanan, Hua Sudong, Yue Hongfei (2023-04)
Study on Preparation and Rheological Properties of 3D Printed Pre-Foaming Concrete - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-12)
Comparison of Rheology Measurement Techniques Used in 3D Concrete Printing Applications - Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
Rheological Property Criteria for Buildable 3D Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
A Review - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Miranda Luiza, Jovanović Balša, Lesage Karel, Schutter Geert (2023-10)
Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspective - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
Technologies for Improving Buildability in 3D Concrete Printing - Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Perrot Arnaud, Rangeard Damien (2019-04)
3D Printing in Concrete:
Techniques for Extrusion-Casting - Rehman Atta, Basha Shaik, Choi Kichang, Kang Manmin et al. (2024-07)
An Analysis of Penetrometer-Test Methods for Structural Build-Up in Stiff and Accelerated 3D Concrete Printing Mixtures - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
Towards Full Automation in 3D Concrete Printing Construction:
Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Şahin Hatice, Mardani Ali (2021-12)
Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
A State of the Art Review - Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
3D Printed Concrete:
Applications, Performance, and Challenges - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Tarhan Yeşim, Şahin Remzi (2021-05)
Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete - Tran Mien, Cu Yen, Le Chau (2021-10)
Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing - Ungureanu Dragoș, Onuțu Cătălin, Țăranu Nicolae, Vornicu Nicoleta et al. (2023-11)
Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers - Valera Hugo, Pimentel Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-09)
Rheological and 3D Printing-Assessment of Sisal-Fiber Mortar for Architectural Applications - Wang Yuxin, Aslani Farhad, Dyskin Arcady, Pasternak Elena (2023-01)
Digital Twin Applications in 3D Concrete Printing - Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Bos Freek, Salet Theo (2019-06)
Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar - Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
4 Citations
- Teixeira João, Jesus Manuel, Rangel Bárbara, Alves Jorge et al. (2026-01)
Evaluation of Printing Performance of Cementitious Pastes with Alternative Powders - Öztürk Ece, Ince Ceren, Borgianni Yuri, Nicolaides Demetris et al. (2025-12)
Printability, Engineering Properties and Environmental Implications of 3D-Printed Cementitious Mortars Incorporating Hydrated Lime, Tile Powder and Accelerator - Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
Recycled Components in 3D Concrete Printing Mixes:
A Review - Li Yifan, Chen Shuisheng, Yang Liuhua, Guo Chuan et al. (2025-02)
Investigation of the Impact of Material Rheology on the Interlayer Bonding Performance of Solid Waste 3D-Printed Components
BibTeX
@article{bao_yeak_abde_cour.2024.TMf3P,
author = "Ta Minh Phuong Bao and Muy Yeakleang and Sandra Abdelouhab and Luc Courard",
title = "Testing Mortars for 3D Printing: Correlation with Rheological Behavior",
doi = "10.3390/ma17205002",
year = "2024",
journal = "Materials",
volume = "17",
number = "20",
}
Formatted Citation
T. M. P. Bao, M. Yeakleang, S. Abdelouhab and L. Courard, “Testing Mortars for 3D Printing: Correlation with Rheological Behavior”, Materials, vol. 17, no. 20, 2024, doi: 10.3390/ma17205002.
Bao, Ta Minh Phuong, Muy Yeakleang, Sandra Abdelouhab, and Luc Courard. “Testing Mortars for 3D Printing: Correlation with Rheological Behavior”. Materials 17, no. 20 (2024). https://doi.org/10.3390/ma17205002.