Skip to content

Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing (2024-08)

10.3390/ma17164106

 Rudziewicz Magdalena,  Maroszek Marcin,  Setlak (nee Pławecka) Kinga,  Góra Mateusz,  Hebda Marek
Journal Article - Materials, Vol. 17, Iss. 16

Abstract

The continued global urbanization of the world is driving the development of the construction industry. In order to protect the environment, intensive research has been carried out in recent years on the development of sustainable materials and ecological construction methods. Scientific research often focuses on developing building materials that are renewable, energy-efficient, and have minimal impact on the environment throughout their life cycle. Therefore, this article presents research results aimed at developing a concrete mixture using cement with reduced CO2 emissions. In the context of increasing ecological awareness and in line with European Union policy, the development of a mixture based on environmentally friendly cement is of key importance for the future development of the construction industry. The article compares the physical properties of two mixtures, their foaming possibilities, and the influence of the added polypropylene (PP) fibers on the strength properties of the produced composites. It was found that bending strength and compressive strength were highest in the material with silica fume and aluminum powder at 5.36 MPa and 28.76 MPa, respectively. Microscopic analysis revealed significant pore structure differences, with aluminum foamed samples having regular pores and hydrogen peroxide foamed samples having irregular pores. Optimizing aluminum powder and water content improved the materials' strength, crucial for maintaining usability and achieving effective 3D printing. The obtained results are important in the development of research focused on the optimization of 3D printing technology using concrete.

25 References

  1. Chen Yidong, Zhang Yunsheng, Pang Bo, Wang Dafu et al. (2022-04)
    Steel-Fiber Orientational Distribution and Effects on 3D Printed Concrete with Coarse Aggregate
  2. Cho Seung, Rooyen Algurnon, Kearsley Elsabe, Zijl Gideon (2021-12)
    Foam Stability of 3D Printable Foamed Concrete
  3. Gao Yanan, Hua Sudong, Yue Hongfei (2023-04)
    Study on Preparation and Rheological Properties of 3D Printed Pre-Foaming Concrete
  4. Hager Izabela, Maroszek Marcin, Mróz Katarzyna, Kęsek Rafał et al. (2022-06)
    Inter-Layer Bond Strength Testing in 3D Printed Mineral Materials for Construction Applications
  5. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  6. Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
    Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing
  7. Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
    Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing
  8. Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
    3D Printing with Foam-Concrete:
    From Material Design and Testing to Application and Sustainability
  9. Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
    Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication
  10. Markin Slava, Šahmenko Genādijs, Nerella Venkatesh, Näther Mathias et al. (2019-11)
    Investigations on the Foam-Concrete Production Techniques Suitable for 3D Printing with Foam-Concrete
  11. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
    Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures
  12. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  13. Pan Tinghong, Jiang Yaqing, He Hui, Wang Yu et al. (2021-01)
    Effect of Structural Build-Up on Inter-Layer Bond Strength of 3D Printed Cement Mortars
  14. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  15. Parmigiani Silvia, Falliano Devid, Moro Sandro, Ferro Giuseppe et al. (2024-06)
    3D Printed Multi-Functional Foamed Concrete Building Components:
    Material-Properties, Component Design, and 3D Printing Application
  16. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  17. Rudziewicz Magdalena, Maroszek Marcin, Góra Mateusz, Dziura Paweł et al. (2023-09)
    Feasibility Review of Aerated Materials Application in 3D Concrete Printing
  18. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  19. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  20. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  21. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  22. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  23. Zhang Yifan, Aslani Farhad (2021-08)
    Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing
  24. Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
    An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete
  25. Ziejewska Celina, Marczyk Joanna, Korniejenko Kinga, Bednarz Sebastian et al. (2022-04)
    3D Printing of Concrete-Geopolymer Hybrids

6 Citations

  1. Maroszek Marcin, Rudziewicz Magdalena, Shah Syed, Tran Doan et al. (2025-11)
    Development of Eco-Friendly Construction Materials for 3D Printing Using Fly Ash and Demolition Waste
  2. Rudziewicz Magdalena, Maroszek Marcin, Hebda Marek (2025-09)
    Comparison of Porosity and Thermal Conductivity of Concrete and Alkali-Activated Hybrid Binders in 3D-Printed Fiber-Reinforced Foamed Composites
  3. Becher Anton, Gądek Szymon, Korniejenko Kinga (2025-05)
    3D Printing with Geopolymers and Its Applications
  4. Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
    3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
  5. Rudziewicz Magdalena, Maroszek Marcin, Hutyra Adam, Góra Michał et al. (2025-02)
    Influence of Foaming Agents and Stabilizers on Porosity in 3D Printed Foamed Concrete
  6. Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
    Evaluation of 3D Concrete Printing Extrusion-Efficiency

BibTeX
@article{rudz_maro_setl_gora.2024.OoFPFRCMDf3P,
  author            = "Magdalena Rudziewicz and Marcin Maroszek and Kinga Setlak (nee Pławecka) and Mateusz Góra and Marek Hebda",
  title             = "Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing",
  doi               = "10.3390/ma17164106",
  year              = "2024",
  journal           = "Materials",
  volume            = "17",
  number            = "16",
}
Formatted Citation

M. Rudziewicz, M. Maroszek, K. S. (nee Pławecka), M. Góra and M. Hebda, “Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing”, Materials, vol. 17, no. 16, 2024, doi: 10.3390/ma17164106.

Rudziewicz, Magdalena, Marcin Maroszek, Kinga Setlak (nee Pławecka), Mateusz Góra, and Marek Hebda. “Optimization of Foams-Polypropylene Fiber-Reinforced Concrete Mixtures Dedicated for 3D Printing”. Materials 17, no. 16 (2024). https://doi.org/10.3390/ma17164106.