Skip to content

Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing (2022-05)

10.1016/j.cemconcomp.2022.104581

Kondepudi Kala,  Subramaniam Kolluru,  Nematollahi Behzad,  Bong Shin,  Sanjayan Jay
Journal Article - Cement and Concrete Composites, Vol. 131

Abstract

The rheological behavior of concrete mixtures made with alkali-activated fly ash-slag (AAFS) binder paste is investigated for varying aggregate content. The static yield stress, plastic viscosity and thixotropy of the mixtures are evaluated and related with the performance in 3D Concrete Printing (3DCP). The thixotropy of the concrete mixture is primarily influenced by AAFS binder paste composition and does not change with the aggregate content. Rheology control of the AAFS binder paste is achieved using additives like nano-clay, which enhance the buildup of internal structure and provide thixotropy in the concrete mixtures. The paste content, the surface area of aggregate, and the packing of solids in a concrete mixture influence its yield stress. The static yield stress increases sensitively in relation to the proportion of the surface area of the solids to the paste volume content in the concrete mixture. The minimum requirement of the paste content from packing of solids in the mixture is given by the Fuller-Thompson curve. Excess paste content in proportion to the demand determined from the surface area of aggregate and packing of solids in the concrete mixture produces a decrease in the static yield stress. For producing AAFS concrete mixtures suitable for 3DCP, the paste content in the concrete mixture should meet the requirement of paste demand, which depends on the aggregate content and packing of solids

16 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  3. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  4. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  5. Ivanova Irina, Mechtcherine Viktor (2020-03)
    Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield-Stress and Structural Build-Up of Fresh Concrete
  6. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  7. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  8. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  9. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  10. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  11. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  12. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  13. Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
    The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
    A Review
  14. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  15. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  16. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content

21 Citations

  1. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-12)
    Effect of Aggregate-to-Binder Ratio on 3D Printed Concrete:
    Printability, Mechanics, and Shrinkage
  2. Mishra Jyotirmoy, Babafemi Adewumi, Combrinck Riaan (2025-04)
    Limitations and Research Priorities in 3D-Printed Geopolymer Concrete:
    A Perspective Contribution
  3. Shilton Robert, Wang Shen, Banthia Nemkumar (2024-12)
    Use of Polysaccharides as a Rheology-Modifying-Admixture for Alkali-Activated Materials for 3D Printing
  4. Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
    Micro/Nano Additives in 3D Printing Concrete:
    Opportunities, Challenges, and Potential Outlook in Construction Applications
  5. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  6. Kamakshi Tippabhotla, Thakur Manideep, Subramaniam Kolluru (2024-07)
    Formulating Printable Concrete Mixtures Based on Paste-Rheology and Aggregate-Content:
    Application to Alkali-Activated Binders
  7. Sahana C., Soda Prabhath, Dwivedi Ashutosh, Kumar Sandeep et al. (2024-07)
    3D Printing with Stabilized Earth:
    Material-Development and Effect of Carbon-Sequestration on Engineering-Performance
  8. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  9. Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
    Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
    Critical Factors, Advancements, Challenges, and Future Directions
  10. Kamakshi Tippabhotla, Subramaniam Kolluru (2024-05)
    Rheology-Control and 3D Concrete Printing with Fly Ash-Based Aqueous Nano-Silica Enhanced Alkali-Activated Binders
  11. Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
    Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
  12. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  13. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
    Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization
  14. Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
    Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
    Impact on 3D Printing Performance and Material-Properties
  15. Nunes Gabrielly, Anjos Marcos, Lins Ana, Negreiros Ana et al. (2023-08)
    Evaluation of the Mechanical Behavior of Representative Volumetric Elements of 3DCP Masonry-Mixtures with Partial Replacement of Cement by Limestone-Filler and Metakaolin
  16. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  17. Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
    A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications
  18. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
    Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing
  19. Mujeeb Syed, Samudrala Manideep, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
    Development of Alkali-Activated 3D Printable Concrete:
    A Review
  20. Diniz Hugo, Martinelli Antônio, Cabral Kleber, Ferreira Ruan et al. (2023-01)
    Synergistic Effects of the Use of Metakaolin, Sand and Water on the Properties of Cementitious Composites for 3D Printing
  21. Li Mingyang, Weng Yiwei, Liu Zhixin, Zhang Dong et al. (2022-09)
    Optimizing of Chemical Admixtures for 3D Printable Cementitious Materials by Central Composite Design

BibTeX
@article{kond_subr_nema_bong.2022.SoPPaPRiAAMtMtRDo3CP,
  author            = "Kala Kondepudi and Kolluru V. L. Subramaniam and Behzad Nematollahi and Shin Hau Bong and Jay Gnananandan Sanjayan",
  title             = "Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing",
  doi               = "10.1016/j.cemconcomp.2022.104581",
  year              = "2022",
  journal           = "Cement and Concrete Composites",
  volume            = "131",
}
Formatted Citation

K. Kondepudi, K. V. L. Subramaniam, B. Nematollahi, S. H. Bong and J. G. Sanjayan, “Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing”, Cement and Concrete Composites, vol. 131, 2022, doi: 10.1016/j.cemconcomp.2022.104581.

Kondepudi, Kala, Kolluru V. L. Subramaniam, Behzad Nematollahi, Shin Hau Bong, and Jay Gnananandan Sanjayan. “Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing”. Cement and Concrete Composites 131 (2022). https://doi.org/10.1016/j.cemconcomp.2022.104581.