Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites (2025-05)¶
10.1016/j.conbuildmat.2025.141931
Chen Meng, Sun Hao, ,
Journal Article - Construction and Building Materials, Vol. 486, No. 141931
Abstract
The use of engineered cementitious composite (ECC) in 3D printing provides an effective way to realize intelligent construction, which promises to remove the dependence on steel bars due to their high ductility characteristics. However, the interfaces and anisotropy brought by 3D printing on the mechanical properties of concrete have rarely been studied regarding the dynamic properties. Hence, a series of tests including elastic modulus, uniaxial tensile, quasi-static, dynamic tensile and microscopic CT analysis are conducted to investigate the relationship between microstructure and anisotropy on the dynamic properties of 3D-printed ECC (3DP-ECC). The results show that the dynamic split tensile strength of the specimens in X/Y/Z tensile directions is significantly anisotropic in the strain rate range of 2.6–7.4 s−1, with the specimens in the X-tensile direction being 5.9 %–14.1 % and 14.4 %–35.0 % higher than that in Y- and Z-directions. A mechanical model based on Mohr circles is proposed to elucidate the changing rules of the failure modes of the specimens in different printing directions. Additionally, the trend of the dynamic splitting increase factor of 3DP-ECC in the range of 10−4–101 s−1 is well predicted by the improved bilinear model. The R2 value higher than 0.96 verified a good correlation between the interfacial pore structure and the anisotropic dynamic splitting behaviour.
¶
39 References
- Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing - Chen Meng, Cheng Jianhua, Zhang Tong, Wang Yuting (2025-03)
Experimental Characterization and Constitutive Modelling of the Anisotropic Dynamic Compressive Behavior of 3D Printed Engineered Cementitious Composites - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
A Critical Review - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Gou Hongxiang, Sofi Massoud, Zhang Zipeng, Zhu Mintao et al. (2024-03)
Combined Printable and Mechanical Analysis of 3D Printed Green High-Strength, Lightweight Engineered Cementitious Composites - He Lewei, Chow Wai, Li Hua (2020-06)
Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
Rheological and Quasi-Static Mechanical Characteristics - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Liu Miao, Huang Yimiao, Wang Fang, Sun Junbo et al. (2021-05)
Tensile and Flexural Properties of 3D Printed Jackets-Reinforced Mortar - Liu Bing, Liu Xiaoyan, Li Guangtao, Geng Songyuan et al. (2022-09)
Study on Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete Using Destructive and Non-Destructive Testing Methods - Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate - Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete - Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material - Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage - Mo Yixin, Xing Jianchun, Yue Songlin, Zhang Yamei et al. (2022-04)
Dynamic Properties of 3D Printed Cement Mortar Based on Split Hopkinson Pressure Bar Testing - Napolitano Rosanna, Forni Daniele, Menna Costantino, Asprone Domenico et al. (2021-11)
Dynamic Characterization of the Layer-Interface Properties of 3D Printed Concrete Elements - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Pang Zhiming, Lu Cong, Li Baoshan, Wang Jiajie (2023-02)
A Multi-Scale Model for Quantifying Fiber-Orientation Effects on the Tensile Properties of 3D Printed Engineered Cementitious Composites - Rui Aoyu, Wang Li, Lin Wenyu, Ma Guowei (2023-10)
Experimental Study on Damage Anisotropy of 3D Printed Concrete Exposed to Sulfate-Attack - Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
A Review - Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2024-07)
Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement - Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Yang Rijiao, Zeng Qiang, Peng Yu, Wang Hailong et al. (2022-05)
Anomalous Matrix and Inter-Layer Pore-Structure of 3D Printed Fiber-Reinforced Cementitious Composites - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
2 Citations
- Xu Shuhao, Lin Xing-Tao, Chen Xiangsheng (2025-11)
Numerical Investigation of Anisotropic in 3D Printed Concrete Specimens Considering the Effects of Weak Interfaces and Pore-Induced Defects - Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
Fresh, Mechanical, and Microstructural Properties
BibTeX
@article{chen_sun_wang_zhan.2025.RBIPSaADSBo3PECC,
author = "Meng Chen and Hao Sun and Yuting Wang and Tong Zhang",
title = "Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites",
doi = "10.1016/j.conbuildmat.2025.141931",
year = "2025",
journal = "Construction and Building Materials",
volume = "486",
pages = "141931",
}
Formatted Citation
M. Chen, H. Sun, Y. Wang and T. Zhang, “Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites”, Construction and Building Materials, vol. 486, p. 141931, 2025, doi: 10.1016/j.conbuildmat.2025.141931.
Chen, Meng, Hao Sun, Yuting Wang, and Tong Zhang. “Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites”. Construction and Building Materials 486 (2025): 141931. https://doi.org/10.1016/j.conbuildmat.2025.141931.