Skip to content

Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete (2022-08)

10.1080/21650373.2022.2113168

 Zhang Yu,  Zhang Yunsheng,  Yang Lin,  Liu Guojian,  Du Hongjian
Journal Article - Journal of Sustainable Cement-Based Materials, pp. 1-14

Abstract

3D printed concrete technology has received a traffic attention in construction industry in recent years, due to the potential advantage: time and labor savings, cost reduction, low environmental impact. In this study, the influence of distribution of aggregate and steel fiber on the mechanical properties of 3D printed concrete is experimentally investigated. The distribution characteristic of aggregate and steel fiber in 3D printed concrete are evaluated by using X-ray computed tomography (X-CT) with 2D image analysis method. The cast concrete is performed as reference. It is found that the aggregate and fiber in cast concrete are relatively evenly distributed and no alignment, while there is an orientation probability of more than 40% for aggregate, and 74% for fiber, respectively, along the printing direction in ± 20 in printed concrete. Meanwhile, using X-CT, the porosity, void sizes, shapes and distributions in printed and cast concrete are also investigated. Furthermore, it is observed that the printed and cast samples comprise of different voids, due to the different construction processes. Finally, the results prove that the performance difference for the printed concrete at different directions possibly depends on the orientation distribution of the aggregate/fiber, as well as the irregular voids, since the aggregates/fibers are orientated by the nozzle along the printing direction.

27 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  2. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  3. Buchli Jonas, Giftthaler Markus, Kumar Nitish, Lussi Manuel et al. (2018-07)
    Digital In-Situ Fabrication:
    Challenges and Opportunities for Robotic In-Situ Fabrication in Architecture, Construction, and Beyond
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  6. Buswell Richard, Thorpe Tony, Soar Rupert, Gibb Alistar (2008-05)
    Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction
  7. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  8. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  9. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  11. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  12. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  13. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  14. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  15. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  16. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  17. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  18. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  19. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  20. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  21. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  22. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  23. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  24. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  25. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  26. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  27. Zhang Hao, Zhu Liming, Zhang Fan, Yang Mijia (2021-04)
    Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites

16 Citations

  1. Cao Jing, Yang Xiaojie, Shi Yaming, Yang Yi et al. (2025-12)
    Numerical Analysis of Mechanical Properties of Steel Fiber Composite Cement Mortar Considering Non-Uniformity in 3D Printing.
  2. Ding Shengxuan, Li Jiren, Liu Yiming (2025-06)
    Study on Mechanical Properties and Environmental Benefits of 3D Printed Lean Magnesium Ore Concrete Filled Columns Based on Three-Dimensional Meso-Structure
  3. Zhang Yi, Tao Yaxin, Godinho Jose, Ren Qiang et al. (2024-11)
    Layer Interface Characteristics and Adhesion of 3D Printed Cement-Based Materials Exposed to Post-Printing Temperature Disturbance
  4. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  5. Liu Xiaoshuang, Li Shiming, Duan Yanjun, Du Zhiqin et al. (2024-09)
    Influence of Printing Interval on the Imbibition Behavior of 3D Printed Foam-Concrete for Sustainable and Green Building Applications
  6. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  7. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  8. Wang Yibo, Ren Changzai, Yan Ming, Ao Chenyang (2024-04)
    Blockage-Mechanism-Analysis and Optimization Design of 3D Concrete Print-Head
  9. Wang Jun, Liu Zhenhua, Hou Jia, Ge Mengmeng (2024-04)
    Research-Progress and Trend-Analysis of Concrete 3D Printing Technology Based on CiteSpace
  10. Xiao Jianzhuang, Bai Meiyan, Wu Yuching, Duan Zhenhua et al. (2024-01)
    Inter-Layer Bonding Strength and Pore Characteristics of 3D Printed Engineered Cementitious Composites
  11. Lu Bing, Zhao Huanyu, Li Mingyang, Wong Teck et al. (2023-10)
    MgO/Fluid Catalytic Cracking Ash-Blends for 3D Printing on Vertical Surfaces
  12. Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
    Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
  13. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  14. Arunothayan Arun, Sanjayan Jay (2023-01)
    Elevated Temperature Effects on 3D Printed Ultra-High-Performance Concrete
  15. Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
    Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types
  16. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review

BibTeX
@article{zhan_zhan_yang_liu.2022.EoAFaVDi3PC,
  author            = "Yu Zhang and Yunsheng Zhang and Lin Yang and Guojian Liu and Hongjian Du",
  title             = "Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete",
  doi               = "10.1080/21650373.2022.2113168",
  year              = "2022",
  journal           = "Journal of Sustainable Cement-Based Materials",
  pages             = "1--14",
}
Formatted Citation

Y. Zhang, Y. Zhang, L. Yang, G. Liu and H. Du, “Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete”, Journal of Sustainable Cement-Based Materials, pp. 1–14, 2022, doi: 10.1080/21650373.2022.2113168.

Zhang, Yu, Yunsheng Zhang, Lin Yang, Guojian Liu, and Hongjian Du. “Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete”. Journal of Sustainable Cement-Based Materials, 2022, 1–14. https://doi.org/10.1080/21650373.2022.2113168.