Data-Driven Analysis in 3D Concrete Printing (2025-01)¶
Schossler Rodrigo, Ullah Shafi, Alajlan Zaid,
Journal Article - AI in Civil Engineering, Vol. 4, Iss. 1
Abstract
Accurately predicting 3D concrete printing (3DCP) properties through the utilization of machine learning holds promise for advancing cost-effective, eco-friendly construction practices that prioritize safety, reliability, and environmental sustainability. In this study, a comprehensive exploration of seven regression models was undertaken, complemented by the application of Bayesian optimization techniques to forecast critical metrics such as compressive strength, pump speed, and carbon footprint within the realm of 3DCP technology. Drawing upon a compilation of various 3DCP mixtures sourced from existing literature, an intricate carbon footprint calculation methodology was devised, resulting in the establishment of a bespoke database tailored to the study’s objectives. The performance evaluation of the developed models was conducted through the analysis of key statistical indicators, including R2, RMSE, MAE, and Pearson correlation. To enhance the robustness and generalizability of the models, a rigorous tenfold crossvalidation strategy coupled with a strategic introduction of noise was employed during the validation process. The incorporation of Shapley Additive Explanations (SHAP) analysis provided insightful interpretability into the predictive capabilities of the models, enabling a nuanced understanding of the underlying relationships between input variables and target outputs. Furthermore, the application of multi-objective optimization techniques facilitated judicious decision-making processes, enabling the identification of optimal 3DCP mixture compositions that concurrently enhance performance metrics, reduce operational costs, and mitigate CO₂ emissions.
¶
43 References
- Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-09)
3D Printing Effect on the Compressive Strength of Concrete Structures - Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements - Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
A Fundamental Study of Extrudability and Early-Age Strength Development - Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite - Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
Printability and Direction-Dependent Mechanical Performance - Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete - Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning - Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
Rheological Property Criteria for Buildable 3D Printing Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Lee Hojae, Seo Eun-A, Kim Won-Woo, Moon Jae-Heum (2021-10)
Experimental Study on Time-Dependent Changes in Rheological Properties and Flow-Rate of 3D Concrete Printing Materials - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing - Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
Underwater 3D Printing of Cement-Based Mortar - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
3D Printing of Cement-Based Materials with Adapted Buildability - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials - Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
3D Printable Concrete with Natural and Recycled Coarse Aggregates:
Rheological, Mechanical and Shrinkage Behavior - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Rehman Atta, Lee Sang-Min, Kim Jung-Hoon (2020-06)
Use of Municipal Solid-Waste Incineration-Ash in 3D Printable Concrete - Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction - Shakor Pshtiwan, Renneberg Jarred, Nejadi Shami, Paul Gavin (2017-07)
Optimization of Different Concrete Mix Designs for 3D Printing by Utilizing 6DOF Industrial Robot - Tao Yaxin, Rahul Attupurathu, Lesage Karel, Tittelboom Kim et al. (2021-11)
Mechanical and Microstructural Properties of 3D Printable Concrete in the Context of the Twin-Pipe Pumping-Strategy - Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
Utilization of Recycled Glass for 3D Concrete Printing:
Rheological and Mechanical Properties - Wang Weiqiang, Konstantinidis Nikolaos, Austin Simon, Buswell Richard et al. (2020-07)
Flexural Behavior of AR-Glass-Textile-Reinforced 3D Printed Concrete Beams - Wang Jun, Liu Zhenhua, Hou Jia, Ge Mengmeng (2024-04)
Research-Progress and Trend-Analysis of Concrete 3D Printing Technology Based on CiteSpace - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
3 Citations
- Hammoud Ahmad, Mohomad Yosef, Shomar Hasan, Masad Eyad et al. (2025-12)
Data-Driven Framework for Printability and Geometric Quality Prediction in 3D Concrete Printing - Akter Usmi, Rezvi Syed, Ratul Md., Kishor Saad (2025-09)
Optimization of Data-Driven Ensemble Models Using Firefly Algorithm for Enhanced 3D Printed Concrete Strength Prediction - Zafar Muhammad, Javadnejad Farid, Hojati Maryam (2025-07)
Optimizing Rheological Properties of 3D Printed Cementitious Materials via Ensemble Machine Learning
BibTeX
@article{scho_ulla_alaj_yu.2025.DDAi3CP,
author = "Rodrigo Teixeira Schossler and Shafi Ullah and Zaid Alajlan and Xiong Yu",
title = "Data-Driven Analysis in 3D Concrete Printing: Predicting and Optimizing Construction Mixtures",
doi = "10.1007/s43503-024-00044-4",
year = "2025",
journal = "AI in Civil Engineering",
volume = "4",
number = "1",
}
Formatted Citation
R. T. Schossler, S. Ullah, Z. Alajlan and X. Yu, “Data-Driven Analysis in 3D Concrete Printing: Predicting and Optimizing Construction Mixtures”, AI in Civil Engineering, vol. 4, no. 1, 2025, doi: 10.1007/s43503-024-00044-4.
Schossler, Rodrigo Teixeira, Shafi Ullah, Zaid Alajlan, and Xiong Yu. “Data-Driven Analysis in 3D Concrete Printing: Predicting and Optimizing Construction Mixtures”. AI in Civil Engineering 4, no. 1 (2025). https://doi.org/10.1007/s43503-024-00044-4.