Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders (2021-06)¶
, , ,
Journal Article - Additive Manufacturing, Vol. 46
Abstract
This study aims to relate print velocity to critical parameters extracted from a controlled ram extrusion test, towards a test method to expedite the selection of materials and process parameters for 3D-printing of cementitious materials. Higher print velocities, while aiding faster construction, results in a need for higher extrusion pressure, while lower velocities interfere with extrudate quality through effects such as water filtration. Steadystate pressures and dead-zone lengths corresponding to a chosen barrel-die geometry and print velocity are extracted from extrusion force-ram displacement relationships. The steady state pressure increases with print velocity, while the dead-zone length decreases. The deposition pressure between the nozzle exit and the print bed increases with increase in print velocity, and is proportional to the extrusion pressure. These results are used to define a range of desirable print velocities for the chosen geometry and the printer system, so that the extrusion pressure and dead-zone lengths are simultaneously optimized. The lower limit of the print velocity range, steadystate pressure, and dead-zone lengths are all lower when the material microstructural parameter (ratio of particle volume fraction to square of mean size) is higher, indicating the importance of appropriate material design in ensuring efficient 3D printing of cementitious binders.
¶
18 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
Materials and Construction Technology - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing - Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Perrot Arnaud, Mélinge Yannick, Estellé Patrice, Lanos Christophe (2009-04)
Vibro-Extrusion:
A New Forming Process for Cement-Based Materials - Perrot Arnaud, Rangeard Damien, Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Extrusion of Cement-Based Materials:
An Overview - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges
12 Citations
- Shilar Fatheali, Shilar Mubarakali (2025-12)
Performance-Based Analysis of 3D Printed Geopolymers Relating Durability, Microstructure, and Life Cycle Assessment - Rabiei Mahsa, Moini Mohamadreza (2025-09)
Extrusion Under Material Uncertainty with Pressure-Based Closed-Loop Feedback Control in Robotic Concrete Additive Manufacturing - Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
Key Variables Influencing the Performance of 3D Printed Concrete:
A Comprehensive Analysis - Xiao Yinan, Hack Norman, Kloft Harald, Lowke Dirk et al. (2025-03)
Constraint-Based Form-Finding of Space Trusses for Injection 3D Concrete Printing Through Vector-Based Graphic Statics - Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
A Systematic Review - Sovetova Meruyert, Calautit John (2024-07)
Design, Calibration and Performance Evaluation of a Small-Scale 3D Printer for Accelerating Research in Additive Manufacturing in Construction - Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete - Silva Maicon, Silva Lívia, Toralles Berenice, Cardoso Flávia et al. (2024-02)
Building a Sustainable Future:
The Role of Additive Manufacturing in Civil Construction - Wan Qian, Yang Wenwei, Wang Li, Ma Guowei (2023-04)
Global Continuous Path-Planning for 3D Concrete Printing Multi-Branched Structure - Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing - Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar?
BibTeX
@article{nair_pand_trip_neit.2021.RPVaECo3PCB,
author = "Sooraj Kumar A. O. Nair and Subhashree Panda and Avinaya Tripathi and Narayanan Neithalath",
title = "Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders: Implications Towards Testing Methods",
doi = "10.1016/j.addma.2021.102127",
year = "2021",
journal = "Additive Manufacturing",
volume = "46",
}
Formatted Citation
S. K. A. O. Nair, S. Panda, A. Tripathi and N. Neithalath, “Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders: Implications Towards Testing Methods”, Additive Manufacturing, vol. 46, 2021, doi: 10.1016/j.addma.2021.102127.
Nair, Sooraj Kumar A. O., Subhashree Panda, Avinaya Tripathi, and Narayanan Neithalath. “Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders: Implications Towards Testing Methods”. Additive Manufacturing 46 (2021). https://doi.org/10.1016/j.addma.2021.102127.