Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing (2018-09)¶
,
Contribution - Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication, pp. 148-156
Abstract
Additive manufacturing is predicted to revolutionize the way in which we construct our cities and structures. These technologies can create a big potential for freeform design whilst also providing reductions in cost, materials wastage and workplace injuries. 3D concrete printing (3DCP) is one technique that is being investigated. Although many benefits are evident, there are many technological issues that have yet to be explored, particularly that of the bonding strength in extrusion based 3DCP. Extrusion based 3DCP works on a layer by layer deposition of a stiff cementitious mix, forming a material interface. This interface essentially becomes a position of weakness, forming a weak bond. Currently the interlayer bond is assumed to be related to either mechanical anchorage effects or chemical hydration effects. This paper hypothesis that the mechanical effects are predominant and to prove the hypothesis presents a series of experiments that were carried out to analyse and enhance the bond at this interface. The methodology employed in this study will focus on applying a cement paste to the top of an extruded substrate layer before the secondary layer is deposited. We demonstrated that the application of a paste at the interlayer does show an increase in bond strength. The greatest bond strength was found in pastes mixed with additives to sustain flow characteristics, over a time gap. The increase in contact area on both layers is now verified to be a crucial factor in bond strength development.
¶
6 References
- Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
Potential Benefits of Digital Fabrication for Complex Structures:
Environmental Assessment of a Robotically Fabricated Concrete Wall - Khoshnevis Behrokh, Bekey George (2002-09)
Automated Construction Using Contour Crafting:
Applications on Earth and Beyond - Sakin Mehmet, Kiroglu Yusuf (2017-10)
3D Printing of Buildings:
Construction of the Sustainable Houses of the Future by BIM - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
27 Citations
- Mercimek Ömer, Şahin Oğuzhan, Çelik Alper, Ozkan Ekinci Mehmet et al. (2025-08)
Structural Performance of Pre-Fabricated 3D Printed Concrete Walls:
Effect of Cold Joint, Axial Load and Load Type - Demirbaş Ali, Tuğluca Merve, Şahin Oğuzhan, İlcan Hüseyin et al. (2025-05)
A Comprehensive Study on the Valorization of Recycled Concrete Aggregates in 3D-Printable Cementitious Systems - Kompella Sriram, Levi Marinella, Ferrara Liberato (2025-04)
Identifying Interlayer Fracture Properties in 3D Printed Concrete Specimens via Multidirectional Flexural Tests - Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction - Malik Umair, Riaz Raja, Rehman Saif, Usman Muhammad et al. (2024-07)
Advancing Mix-Design Prediction in 3D Printed Concrete:
Predicting Anisotropic Compressive Strength and Slump-Flow - Lee Yoon, Lee Sang, Kim Jae, Jeong Hoseong et al. (2024-07)
Inter-Layer Bond Strength of 3D Printed Concrete Members with Ultra-High-Performance Concrete Mix - Özalp Fatih (2024-01)
Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete - Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
A Detailed Review - Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
The State of Art - Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy - Che Yujun, Yang Huashan (2022-10)
Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate - Farahbakhsh Mehdi, Rybkowski Zofia, Zakira Umme, Kalantar Negar et al. (2022-07)
Impact of Robotic 3D Printing Process Parameters on Inter-Layer Bond Strength - Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
A Review - Marchment Taylor, Sanjayan Jay (2022-04)
Lap Joint Reinforcement for 3D Concrete Printing - Tam Vo, Hien Do, Luan Phan, Tran Van et al. (2021-11)
3D Concrete Printing-Material:
Preliminary Study - Rodriguez Fabian, Olek Jan, Moini Mohamadreza, Zavattieri Pablo et al. (2021-11)
Linking Solids Content and Flow Properties of Mortars to Their Three-Dimensional Printing Characteristics - Krishnaraja A., Guru K. (2021-02)
3D Printing Concrete:
A Review - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Salman Nazar, Ma Guowei, Ijaz Nauman, Wang Li (2021-01)
Weak Inter-Layer Bonding in Extrusion 3D Concrete Printing:
A Comparative Analysis of Mitigation Techniques - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing - Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
BibTeX
@inproceedings{marc_sanj.2019.MoEILBSi3CP,
author = "Taylor Marchment and Jay Gnananandan Sanjayan",
title = "Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing",
doi = "10.1007/978-3-319-99519-9_13",
year = "2019",
volume = "19",
pages = "148--156",
booktitle = "Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2018",
editor = "Timothy Paul Wangler and Robert Johann Flatt",
}
Formatted Citation
T. Marchment and J. G. Sanjayan, “Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing”, in Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2018, 2019, vol. 19, pp. 148–156. doi: 10.1007/978-3-319-99519-9_13.
Marchment, Taylor, and Jay Gnananandan Sanjayan. “Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing”. In Proceedings of the 1st RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2018, edited by Timothy Paul Wangler and Robert Johann Flatt, 19:148–56, 2019. https://doi.org/10.1007/978-3-319-99519-9_13.