Skip to content

Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete (2023-12)

10.1016/j.conbuildmat.2023.134337

 Christ Julian,  Perrot Arnaud,  Ottosen Lisbeth,  Koss Holger
Journal Article - Construction and Building Materials, Vol. 411, No. 134337

Abstract

3D concrete printing materials with advanced rheological properties are being developed to realize more structurally optimized and sustainable structures. However, traditional mixtures use large shares of cementitious materials presenting reduced sustainability. In this paper, thermo-reversible mammal gelatin and κ-carrageenan are explored as alternative binders for temperature-controlled concrete printing. Rheological properties were found suitable at solution concentrations of 80–120%-w/v mammal gelatin in a 40%-w/w biopolymer-aggregate composite and 3%-w/v κ-carrageenan in a 50%-w/w composite at temperatures of, respectively, 50 °C and 65 °C. The corresponding yield stress increases from 0.1 to 107kPa under cooling to 20 °C demonstrated good buildability.

27 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  3. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  4. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-12)
    Gravity-Induced Flow to Characterize Rheological Properties of Printable Cement-Based Materials
  5. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  6. Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
    3D Concrete Printing for Sustainable Construction
  7. Kontovourkis Odysseas, Tryfonos George (2019-11)
    Robotic 3D Clay Printing of Prefabricated Non-Conventional Wall Components Based on a Parametric-Integrated Design
  8. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  9. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  10. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  11. Luhar Salmabanu, Suntharalingam Thadshajini, Navaratnam Satheeskumar, Luhar Ismail et al. (2020-12)
    Sustainable and Renewable Bio-Based Natural Fibers and Its Application for 3D Printed Concrete:
    A Review
  12. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  13. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  14. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  15. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  16. Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
    3D Printing of Earth-Based Materials:
    Processing Aspects
  17. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  18. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  19. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  20. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  21. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  22. Teizer Jochen, Blickle Alexander, King Tobias, Leitzbach Olaf et al. (2016-07)
    Large-Scale 3D Printing of Complex Geometric Shapes in Construction
  23. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  24. Wangler Timothy, Pileggi Rafael, Gürel Şeyma, Flatt Robert (2022-03)
    A Chemical Process Engineering Look at Digital Concrete Processes:
    Critical Step Design, In-Line Mixing, and Scale-Up
  25. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  26. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  27. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing

7 Citations

  1. Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
    Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
    A Review of Advances in Laboratory and Real-Scale Construction Projects
  2. Perrot Arnaud, Jacquet Yohan, Amziane Sofiane (2025-01)
    3D Concrete Printing
  3. Wang Li, Lin Wenyu, Wan Qian, Li Zhijian et al. (2024-11)
    Manufacturing Accuracy Improvement of Concrete Product by Hybrid Additive-Subtractive Method Based on the Time-Dependent Characteristics of Cementitious Materials
  4. Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
    A Path Towards SDGs:
    Investigation of the Challenges in Adopting 3D Concrete Printing in India
  5. Perrot Arnaud, Jacquet Yohan, Caron Jean-François, Mesnil Romain et al. (2024-08)
    Snapshot on 3D Printing with Alternative Binders and Materials:
    Earth, Geopolymers, Gypsum and Low-Carbon Concrete
  6. Maierdan Yierfan, Zhao Diandian, Choksi Pooja, Garmonina Maria et al. (2024-05)
    Rheology, 3D Printing, and Particle-Interactions of Xanthan-Gum-Clay Binder for Earth Concrete
  7. Zhang Yi, Ren Qiang, Dai Xiaodi, Tao Yaxin et al. (2024-03)
    A Potential Active Rheology-Control Approach for 3D Printable Cement-Based Materials:
    Coupling of Temperature and Viscosity-Modifiers

BibTeX
@article{chri_perr_otto_koss.2024.RCoTSBB3PC,
  author            = "Julian Christ and Arnaud Perrot and Lisbeth M. Ottosen and Holger Koss",
  title             = "Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete",
  doi               = "10.1016/j.conbuildmat.2023.134337",
  year              = "2024",
  journal           = "Construction and Building Materials",
  volume            = "411",
  pages             = "134337",
}
Formatted Citation

J. Christ, A. Perrot, L. M. Ottosen and H. Koss, “Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete”, Construction and Building Materials, vol. 411, p. 134337, 2024, doi: 10.1016/j.conbuildmat.2023.134337.

Christ, Julian, Arnaud Perrot, Lisbeth M. Ottosen, and Holger Koss. “Rheological Characterization of Temperature-Sensitive Biopolymer-Bound 3D Printing Concrete”. Construction and Building Materials 411 (2024): 134337. https://doi.org/10.1016/j.conbuildmat.2023.134337.