Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique (2022-11)¶
10.1016/j.conbuildmat.2022.129684
Yue J., Beskos Dimitrios, Feng C., Wu Kai
Journal Article - Construction and Building Materials, Vol. 361
Abstract
This paper presents a study on the fracture behavior of hardened printed concrete. The fracture properties of conventional cast and printed concrete (in three printing types) were compared by conducting the splitting and three-point bending tests. The anisotropic behavior of printed concrete was analyzed through the micro-cracking mechanism monitored by using the acoustic emission (AE) technique. Compared to the cast concrete, the fracture strength of printed concrete is reduced, especially when the load was applied at the interface between the successively printed filaments. The interfaces affect the micro-cracking modes during the fracture process of the printed concrete. When the number of shear micro-cracks increases, the values of splitting strength, flexural strength and fracture energy decrease. Useful criterial indicators for the design of a printed concrete member or a structure are suggested.
¶
26 References
- Alkhalidi Ammar, Hatuqay Dina (2020-02)
Energy Efficient 3D Printed Buildings:
Material and Techniques Selection Worldwide Study - Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Flatt Robert, Wangler Timothy (2018-08)
Editorial for Special Issue on Digital Concrete - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
Buildability Prediction of 3D Printed Concrete at Early-Ages:
A Numerical Study with Drucker-Prager-Model - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Pegna Joseph (1997-02)
Exploratory Investigation of Solid Freeform Construction - Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
12 Citations
- Cheng Jianhua, Chen Meng, Ge Yulin, Zhang Tong (2025-12)
Mechanical Behavior and Damage Evolution of 3D-Printed Engineered Cementitious Composites at Elevated Temperatures:
Insights from Acoustic Emission Characterization - Feng Xiaowei, Carvelli Valter, Pan Dongjiang, Zhu Chuankai et al. (2025-12)
Additive Manufacturing of Hybrid Straw-Soil-Cement Materials for Enhanced Mine Models - Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
Multi-Scale Mechanisms of Fracture Behaviour - Ingle Vaibhav, Prem Prabhat (2025-07)
Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States - Mukhtar Faisal (2025-05)
3D-Printed Concrete Fracture:
Effects of Cohesive Laws, Mixes, and Print Parameters in 3D EXtended FEM - Ducoulombier Nicolas, Bono Victor, Kachkouch Fatima, Jacquet Yohan et al. (2025-01)
From Laboratory to Practice - Liu Qiong, Wang Qiming, Sun Chang, Li Jiawang et al. (2025-01)
Inter-Layer Shear Strength and Bonding Strength of Sinuous 3D Printed Mortar - Yabanigül Meryem, Özer Derya (2024-12)
Exploring Architectural Units Through Robotic 3D Concrete Printing of Space-Filling Geometries - Skibicki Szymon, Dvořák Richard, Pazdera Luboš, Topolář Libor et al. (2024-11)
Anisotropic Mechanical Properties of 3D Printed Mortar Determined by Standard Flexural and Compression-Test and Acoustic Emission - Glotz Theresa, Petryna Yuri (2024-08)
Experimental Characterization of Anisotropic Mechanical Behavior and Failure-Mechanisms of Hardened Printed Concrete - Sun Chang, Li Jiawang, Liu Qiong, Chen Kailun et al. (2024-07)
Compressive Performance and Damage Mechanism of Concrete Short Columns Confined by Steel-Wires-Reinforced 3DPM - Nakase Kota, Hashimoto Katsufumi, Sugiyama Takafumi, Kono Katsuya (2024-06)
Influence of Print Paths on Mechanical Properties and Fracture Propagation of 3D Printed Concrete
BibTeX
@article{yue_besk_feng_wu.2022.HFCoPCUAEMT,
author = "J. G. Yue and Dimitrios E. Beskos and C. Feng and Kai Wu",
title = "Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique",
doi = "10.1016/j.conbuildmat.2022.129684",
year = "2022",
journal = "Construction and Building Materials",
volume = "361",
}
Formatted Citation
J. G. Yue, D. E. Beskos, C. Feng and K. Wu, “Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique”, Construction and Building Materials, vol. 361, 2022, doi: 10.1016/j.conbuildmat.2022.129684.
Yue, J. G., Dimitrios E. Beskos, C. Feng, and Kai Wu. “Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique”. Construction and Building Materials 361 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129684.