Skip to content

Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization (2025-08)

10.3390/ma18173989

Yang Shuai,  Li Fei, Lu Ya, Xu Xiaoming, Zhou Huajie, Zhou Lian, Wei Yongkang
Journal Article - Materials, Vol. 18, Iss. 17, No. 3989

Abstract

Current research and technical standards primarily rely on observational methods to evaluate the printability of 3D printing materials. There is a lack of quantitative assessment metrics for extrudability and supportability, and experimental data cannot be used to characterize extrudability and buildability. Further research is needed. Based on traditional workability parameters (such as flowability), this study explored the influence of printability characteristics and adopted two quantitative indicators—extrusion uniformity and cumulative deformation rate—to comprehensively evaluate material performance from two aspects, while observing the trend of changes in traditional workability indicators and print quality under experimental conditions. The experimental results showed that the extrusion uniformity of 3D-printed mortar initially improved and then gradually deteriorated as flowability increased, and was inversely proportional to dynamic yield stress. The cumulative deformation rate decreases with the improvement of height retention capability and the increase in static yield stress. Through parameter analysis, the optimal printing performance conditions were determined: when the extrusion uniformity is below 3.3% and the cumulative deformation rate is ≤6%, the corresponding dynamic yield stress range is 200 Pa to 800 Pa, and the static yield stress range is 1800 Pa to 3300 Pa. Under these parameters, the mortar exhibits excellent printing performance, including high-layer stacking capability (≥30 layers) and enhanced structural stability. This experiment demonstrates that using these two quantitative indicators can simply and efficiently evaluate the performance metrics of 3D-printed materials, while also revealing the relationship between the workability and printing quality of 3D-printed recycled micro-powder geopolymer materials.

27 References

  1. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  2. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  3. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  4. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  5. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  6. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  7. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  8. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  9. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  10. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  11. Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
    Buildability Prediction of 3D Printed Concrete at Early-Ages:
    A Numerical Study with Drucker-Prager-Model
  12. Liu Xiongfei, Li Chuang, Guo Pei, Wang Li et al. (2025-02)
    Spray-Based 3D Printed Tunnel Slag Concrete:
    Evaluation for Printability and Mechanical Performance
  13. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  14. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  15. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  16. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  17. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  18. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  19. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  20. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  21. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  22. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  23. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  24. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  25. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  26. Wang Qing, Ren Xiaodan, Li Jie (2023-08)
    Damage-Rheology Model for Predicting 3D Printed Concrete Buildability
  27. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review

1 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review

BibTeX
@article{yang_li_lu_xu.2025.SotPCoa3PSftPoPO,
  author            = "Shuai Yang and Fei Li and Ya Lu and Xiaoming Xu and Huajie Zhou and Lian Zhou and Yongkang Wei",
  title             = "Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization",
  doi               = "10.3390/ma18173989",
  year              = "2025",
  journal           = "Materials",
  volume            = "18",
  number            = "17",
  pages             = "3989",
}
Formatted Citation

S. Yang, “Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization”, Materials, vol. 18, no. 17, p. 3989, 2025, doi: 10.3390/ma18173989.

Yang, Shuai, Fei Li, Ya Lu, Xiaoming Xu, Huajie Zhou, Lian Zhou, and Yongkang Wei. “Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization”. Materials 18, no. 17 (2025): 3989. https://doi.org/10.3390/ma18173989.