Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures (2024-07)¶
,
Journal Article - Energy, Vol. 305, No. 132265
Abstract
3D printing in the construction sector is a promising, sustainable approach with the potential to build energy-efficient buildings. However, there is a lack of studies on the thermal properties of 3D-printed structures, which are fundamental to their energy efficiency. This study investigates the impact of printing parameters on thermal conductivity and defect development in 3D-printed concrete structures. Heat flow meter, scanning electron microscope and infrared imaging techniques were employed to assess the thermal properties and microstructure of 3D-printed samples. The results demonstrate that printing parameters significantly influence the porosity, void formation, and microstructural characteristics of 3D-printed concrete, ultimately affecting thermal properties. An increase in extrusion rate leads to higher thermal conductivity, whereas an increase in speed and standoff distance reduces thermal conductivity. Excessive spacing between printed lines can induce voids and gaps, contributing to lower thermal conductivity, while minimal spacing can promote higher porosity and larger pores. Infrared imaging revealed nonuniform thermal distribution in 3D-printed structures caused by the layered structure and voids in interlayer gaps. This study provides valuable insights for designing and constructing energy-efficient 3D-printed buildings, contributing to the development of sustainable building practices and the advancement of additive manufacturing in construction.
¶
32 References
- Allouzi Rawan, Azhari Wael, Allouzi Rabab (2020-05)
Conventional Construction and 3D Printing:
A Comparison Study on Material-Cost in Jordan - Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Che Yujun, Yang Huashan (2022-10)
Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate - Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Dey Dhrutiman, Panda Biranchi (2022-10)
An Experimental Study of Thermal Performance of 3D Printed Concrete Slabs - Gomaa Mohamed, Jabi Wassim, Veliz-Reyes Alejandro, Soebarto Veronica (2021-01)
3D Printing System for Earth-Based Construction:
Case Study of Cob - Hao Lucen, Xiao Jianzhuang, Sun Jingting, Xia Bing et al. (2022-06)
Thermal Conductivity of 3D Printed Concrete With Recycled Fine Aggregate Composite Phase-Change-Materials - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete - Holt Camille, Edwards Laurie, Keyte Louise, Moghaddam Farzad et al. (2019-02)
Construction 3D Printing - Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
Development of a 3D Printer for Concrete Structures:
Laboratory Testing of Cementitious Materials - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Li Zhengrong, Xing Wenjing, Sun Jingting, Feng Xiwen (2022-12)
Multi-Scale Structural Characteristics and Heat-Moisture Properties of 3D Printed Building Walls:
A Review - Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume - Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nemova Darya, Kotov Evgeny, Andreeva Darya, Khorobrov Svyatoslav et al. (2022-06)
Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Rodriguez Fabian, Olek Jan, Moini Mohamadreza, Zavattieri Pablo et al. (2021-11)
Linking Solids Content and Flow Properties of Mortars to Their Three-Dimensional Printing Characteristics - Sakin Mehmet, Kiroglu Yusuf (2017-10)
3D Printing of Buildings:
Construction of the Sustainable Houses of the Future by BIM - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Sikora Paweł, Techman Mateusz, Federowicz Karol, Khayatt Ahmed et al. (2022-07)
Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete:
Cast versus Printed Specimens - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Sun Jingting, Xiao Jianzhuang, Li Zhengrong, Feng Xiwen (2021-03)
Experimental Study on the Thermal Performance of a 3D Printed Concrete Prototype Building - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete - Zhang Hongping, Wang Jianhong, Liu Yaling, Zhang Xiaoshuang et al. (2021-11)
Effect of Processing Parameters on the Printing Quality of 3D Printed Composite Cement-Based Materials
10 Citations
- Ding Tao, Wei Jun, Sun Jingting, Feng Kaikai (2025-12)
Experimental Study on Thermal Properties of 3D Printed Concrete with Recycled Sand and Powder - Benz Hendrik, Nguyen Trong The, Klemt-Albert Katharina (2025-11)
Real-Time Vision-Based Defect Detection for Large-Scale on-Site Earthen Additive Manufacturing:
Annotated Dataset and Dual-Model Framework - Li Zhengrong, Xing Wenjing, Sun Jingting (2025-09)
Heat Transfer Calculation and Correction for 3D Printed Walls Incorporating Surface Geometry Effects - Xing Wenjing, Li Zhengrong (2025-09)
Quantifying the Heterogeneous Anisotropic Thermal Performance of Extrusion-Based 3D Printed Structures:
A Multiscale Computational Approach - Murtaza Ghulam, Baldinelli Giorgio (2025-08)
Revolutionizing Architecture:
3D Printing in Large Construction Industry and Strategic Innovations for Enhanced Performance - Yao Weijing, Gao Yangyunzhi, Huang Xin, Du Hongjian (2025-08)
Influence of Printing Speed and Extrusion Speed on the Performance and Pore Structures of 3D Printed Mortar - Bajwa Asad, Samarasinghe Don, Flemmer Claire, Bao Ding (2025-06)
A Systematic Literature Review on the Thermal Behaviour of Building Elements Constructed Through 3D Concrete Printing (3DCP) - Ding Tao, Qu Changwei, Guo Dingming (2025-06)
Thermal and Mechanical Properties of 3D Printed Functionally Graded Concrete:
Utilizing Fibers and Recycled Aggregates as Gradient Components - Sovetova Meruyert, Kaiser Calautit John (2024-08)
Thermal and Energy Efficiency in 3D Printed Buildings:
Review of Geometric Design, Materials and Printing Processes - Sovetova Meruyert, Calautit John (2024-07)
Design, Calibration and Performance Evaluation of a Small-Scale 3D Printer for Accelerating Research in Additive Manufacturing in Construction
BibTeX
@article{sove_cala.2024.IoPPotTPo3PCS,
author = "Meruyert Sovetova and John Kaiser Calautit",
title = "Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures",
doi = "10.1016/j.energy.2024.132265",
year = "2024",
journal = "Energy",
volume = "305",
pages = "132265",
}
Formatted Citation
M. Sovetova and J. K. Calautit, “Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures”, Energy, vol. 305, p. 132265, 2024, doi: 10.1016/j.energy.2024.132265.
Sovetova, Meruyert, and John Kaiser Calautit. “Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures”. Energy 305 (2024): 132265. https://doi.org/10.1016/j.energy.2024.132265.