Skip to content

Comparison of Properties of 3D Printed Mortar in Air vs. Underwater (2021-10)

10.3390/ma14195888

 Woo Seong-Jin,  Yang Jun-Mo,  Lee Hojae,  Kwon Hongkyu
Journal Article - Materials, Vol. 14, Iss. 19

Abstract

Research and technological advancements in 3D concrete printing (3DCP) have led to the idea of applying it to offshore construction. The effect of gravity is reduced underwater, which can have a positive effect on 3DCP. For basic verification of this idea, this study printed and additively manufactured specimens with the same mortar mixture in air and underwater and evaluated properties in the fresh state and the hardened state. The mechanical properties were evaluated using the specimens produced by direct casting to the mold and specimens produced by extracting from the additive part through coring and cutting. The results of the experiment show that underwater 3D printing required a greater amount of printing output than in-air 3D printing for a good print quality, and buildability was improved underwater compared to that in air. In the case of the specimen layered underwater, the density and compressive strength decreased compared to the specimen layered in air. Because there are almost no effects of moisture evaporation and bleeding in water, the interlayer bond strength of the specimen printed underwater was somewhat larger than that printed in air, while there was no effect of the deposition time interval underwater.

32 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Blaakmeer Jan, Lobo B. (2020-07)
    A Robust Mortar and Printing System
  3. Duballet Romain, Baverel Olivier, Dirrenberger Justin (2017-08)
    Classification of Building Systems for Concrete 3D Printing
  4. Hameed Rashid, Papon Aurélie, Perrot Arnaud, Rangeard Damien (2020-07)
    Effect of Metallic Fibers on the Print Quality and Strength of 3D Printed Concrete
  5. Hamidi Fatemeh, Aslani Farhad (2019-05)
    Additive Manufacturing of Cementitious Composites:
    Materials, Methods, Potentials, and Challenge
  6. Kazemian Ali, Yuan Xiao, Meier Ryan, Khoshnevis Behrokh (2019-02)
    Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing
  7. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  8. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  9. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  10. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  11. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  12. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
    Evaluation of the Mechanical Properties of a 3D Printed Mortar
  13. Li Zhijian, Wang Li, Ma Guowei (2019-02)
    Method for the Enhancement of Buildability and Bending-Resistance of Three-Dimensional-Printable Tailing Mortar
  14. Ly Océane, Yoris-Nobile Adrian, Sebaibi Nassim, Blanco-Fernandez Elena et al. (2020-11)
    Optimization of 3D Printed Concrete for Artificial Reefs:
    Biofouling and Mechanical Analysis
  15. Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
    Inter-Layer Strength of 3D Printed Concrete
  16. Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
    Underwater 3D Printing of Cement-Based Mortar
  17. Meurer Maximilian, Claßen Martin (2021-02)
    Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
    Development of a Consistent Experimental Characterization-Strategy
  18. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  19. Nething Christoph, Smirnova Maya, Gröning Janosch, Haase Walter et al. (2020-08)
    A Method for 3D Printing Bio-Cemented Spatial Structures Using Sand and Urease-Active-Calcium-Carbonate-Powder
  20. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  21. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  22. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  23. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  24. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  25. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  26. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  27. Sanjayan Jay, Nematollahi Behzad (2019-02)
    3D Concrete Printing for Construction Applications
  28. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  29. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  30. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  32. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry

16 Citations

  1. Rodriguez Fabian, Vugteveen Caiden, Fross Xavier, Wei Hui et al. (2025-12)
    3D Printing of Cement-Based Materials Using Seawater for Simulated Marine Environments
  2. Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
    Breaking Barriers in Underwater Construction:
    A Two-Stage 3D Printing System with On-Demand Material Adaptation
  3. Yang Xia, Wang Jiuyuan, Huang Han, Wu Gengchen et al. (2025-08)
    Anti-Washout Cement-Based Material for Under-Seawater 3D Concrete Printing:
    Design, Mechanical Properties and Microstructural Analysis
  4. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2025-04)
    Novel Strategy for Enhancing Rheological Properties and Interlayer Bonding in Underwater 3D Concrete Printing
  5. An Xuehui, Liang Qimin, Li Pengfei, You Wei et al. (2025-02)
    Experimental Assessment on Printing Performance and Mechanical Properties of Underwater Self-Protecting 3D Printing Concrete
  6. Li Leo, Zhang Guang-Hu, Kwan Albert (2025-01)
    Exploring Submarine 3D Printing:
    Enhancing Washout-Resistance and Strength of 3D Printable Mortar
  7. Li Leo, Zhang Guang-Hu (2024-08)
    Feasibility of Underwater 3D Printing:
    Effects of Anti-Washout-Admixtures on Printability and Strength of Mortar
  8. Srinivas Dodda, Ventrapragada Durga, Panda Biranchi, Sitharam Thallak (2024-07)
    A Study on the Effect of Mixture Constituents on Washout-Resistance, Mechanical, and Transport Properties in the Context of Underwater 3D Concrete Printing
  9. Korniejenko Kinga, Gądek Szymon, Dynowski Piotr, Tran Doan et al. (2024-02)
    Additive Manufacturing in Underwater Applications
  10. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  11. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
    Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites
  12. Wang Yang, Qiu Liu-Chao, Hu Yan-Ye, Cheng Song-Gui et al. (2023-08)
    Influential Factors on Mechanical Properties and Microscopic Characteristics of Underwater 3D Printing Concrete
  13. Litoš Jiří, Šána Vladimír, Uhlík Adam, Kolář Karel et al. (2023-07)
    Mechanical and Physical Properties of Cement Mixtures for 3D Processing
  14. Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
    Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment
  15. Yang Jun-Mo, Park In-Beom, Lee Hojae, Kwon Hongkyu (2022-12)
    Effects of Nozzle Details on Print Quality and Hardened Properties of Underwater 3D Printed Concrete
  16. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties

BibTeX
@article{woo_yang_lee_kwon.2021.CoPo3PMiAvU,
  author            = "Seong-Jin Woo and Jun-Mo Yang and Hojae Lee and Hongkyu Kwon",
  title             = "Comparison of Properties of 3D Printed Mortar in Air vs. Underwater",
  doi               = "10.3390/ma14195888",
  year              = "2021",
  journal           = "Materials",
  volume            = "14",
  number            = "19",
}
Formatted Citation

S.-J. Woo, J.-M. Yang, H. Lee and H. Kwon, “Comparison of Properties of 3D Printed Mortar in Air vs. Underwater”, Materials, vol. 14, no. 19, 2021, doi: 10.3390/ma14195888.

Woo, Seong-Jin, Jun-Mo Yang, Hojae Lee, and Hongkyu Kwon. “Comparison of Properties of 3D Printed Mortar in Air Vs. Underwater”. Materials 14, no. 19 (2021). https://doi.org/10.3390/ma14195888.