Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete (2025-09)¶
, Atalay Berrin
Journal Article - Polymers, Vol. 17, Iss. 18, No. 2530
Abstract
3D-printable concretes often require high binder content. This study evaluates the use of industrial gypsum by-products, phosphogypsum (PG) and borogypsum (BG), as partial cement replacements to enhance sustainability without compromising printability. PG and BG were incorporated at 2.5–10 wt% to replace the gypsum fraction in cement-based mortars containing fly ash (FA) or ground granulated blast-furnace slag (GGBS), with and without fibers. The fresh properties (spread flow diameter, open time, air content, density, and pH) and compressive strength were measured. At 28 days, the highest strength was achieved with a 7.5% PG addition to the GGBS system (~51 MPa), which exceeded the strength of the GGBS control C1 (~47.6 MPa). In the FA system, 2.5% PG reached 42.5 MPa, comparable to the FA control C2 (41.2 MPa). BG caused pronounced strength penalties at ≥7.5% across both binder systems, indicating a practical BG ceiling of ≤5%. Open time increased from ~0.75 h in the controls to ~2–2.5 h in BG-FA mixes with fibers, whereas PG mixes generally maintained a stable, printable window close to control levels. Overall, adding 5–7.5% PG, particularly in the presence of GGBS, improved mechanical performance without compromising workability. However, BG should be limited to ≤5% unless extended open time is the primary objective. These findings provide quantitative guidance on selecting PG/BG dosages and FA/GGBS systems to balance strength and printability in cement-based, 3D-printable concretes.
¶
25 References
- Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
3D Printable Alkali-Activated Concretes for Building Applications:
A Critical Review - Biricik Öznur, Mardani Ali (2022-05)
Parameters Affecting Thixotropic Behavior of Self-Compacting Concrete and 3D Printable Concrete:
A State of the Art Review - Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
Rheology and Printability of Portland-Cement-Based Materials:
A Review - Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution - Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
A Review of 3D Printing in Construction and Its Impact on the Labor Market - Lafhaj Zoubeir, Rabenantoandro Andry, Moussaoui Soufiane, Dakhli Zakaria et al. (2019-12)
Experimental Approach for Printability-Assessment:
Toward a Practical Decision-Making Framework of Printability for Cementitious Materials - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
From Printing to Performance:
A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
Evaluation of Workability Parameters in 3D Printing Concrete - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Pasco Jubert, Lei Zhen, Aranas Clodualdo (2022-01)
Additive Manufacturing in Off-Site Construction:
Review and Future Directions - Peng Yiming, Unluer Cise (2022-12)
Development of Alternative Cementitious Binders for 3D Printing Applications:
A Critical Review of Progress, Advantages and Challenges - Perrot Arnaud, Jacquet Yohan, Caron Jean-François, Mesnil Romain et al. (2024-08)
Snapshot on 3D Printing with Alternative Binders and Materials:
Earth, Geopolymers, Gypsum and Low-Carbon Concrete - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete - Šahmenko Genādijs, Puzule Līga, Sapata Alise, Šlosbergs Pēteris et al. (2024-06)
Gypsum-Cement-Pozzolan Composites for 3D Printing:
Properties and Life Cycle Assessment - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Tarhan Yeşim, Şahin Remzi (2021-05)
Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials - Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand
BibTeX
@article{tarh_atal.2025.PaBaAfSaHP3PC,
author = "Yeşim Tarhan and Berrin Atalay",
title = "Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete",
doi = "10.3390/polym17182530",
year = "2025",
journal = "Polymers",
volume = "17",
number = "18",
pages = "2530",
}
Formatted Citation
Y. Tarhan and B. Atalay, “Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete”, Polymers, vol. 17, no. 18, p. 2530, 2025, doi: 10.3390/polym17182530.
Tarhan, Yeşim, and Berrin Atalay. “Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete”. Polymers 17, no. 18 (2025): 2530. https://doi.org/10.3390/polym17182530.