Skip to content

Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil (2024-03)

Evaluation of Fresh and Hardened Properties

10.1016/j.scitotenv.2024.171654

 Soda Prabhath,  Dwivedi Ashutosh, Sahana C.,  Gupta Souradeep
Journal Article - Science of the Total Environment, Vol. 924, No. 171654

Abstract

Soil excavated during construction and demolition can be utilized to reduce the demand for natural sand in 3D printed constructions. This research attempts to systematically develop 3D printable stabilized earth-based materials using excavated soil (clay content of 42.5 %) as 25 % and 50 % replacement of natural sand, and examine their compressive strength, water permeable porosity, and moisture sensitivity. The effectiveness of two binder systems - Ordinary Portland Cement (OPC) and a combination of OPC and ground granulated blast furnace slag (GGBS used to replace 30 % OPC by mass), was investigated. Non-expansive clay in the soil leads to a steeper reduction in apparent viscosity, 12-15 % higher flow retention, and 50-60 % lower plastic viscosity of soil-based mixes, thus contributing to superior extrusion quality at 35-40 mm lower initial flow than OPC-sand and OPC-GGBS-sand mixes. The addition of GGBS, due to its irregular particle morphologies and interlocking effects, further enhances the shape retention of the printed layers by 8-26 % compared to OPC-soil mortars. The structural build-ups in OPC-soil and OPC-GGBS-soil mortars increase with the increase in clay content, which enabled buildability up to a height of 1.2 m compared to only 0.51-0.55 m for OPC-sand and OPC-GGBS-sand mortars. Higher water demand due to the addition of natural clay increases the porosity of 3D printed OPC-soil mortars, thereby lowering compressive strength and increasing moisture sensitivity. However, a blend of OPC and GGBS substantially reduces the moisture sensitivity of the printed mortars at 28-day age, attributed to better stabilization of clay through hydraulic and pozzolanic action of GGBS. 28-day wet compressive strength of 14-25 MPa is obtained for the printed soil-based mixes depending on the soil dosage and loading direction. In summary, the study provides a feasible solution for the 3D printing of stabilized earth structures with lower demand for natural sand and OPC.

33 References

  1. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  2. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  3. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2023-03)
    Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content
  4. Chang Ze, Liang Minfei, Xu Yading, Wan Zhi et al. (2023-02)
    Early-Age Creep of 3D Printable Mortar:
    Experiments and Analytical Modelling
  5. Chougan Mehdi, Ghaffar Seyed, Nematollahi Behzad, Sikora Paweł et al. (2022-09)
    Effect of Natural and Calcined-Halloysite-Clay-Minerals as Low-Cost-Additives on the Performance of 3D Printed Alkali-Activated Materials
  6. Dai Xiaodi, Tao Yaxin, Tittelboom Kim, Schutter Geert (2023-02)
    Rheological and Mechanical Properties of 3D Printable Alkali-Activated Slag Mixtures with Addition of Nano Clay
  7. Deshmukh Aparna, Heintzkill Reed, Huerta Rosalba, Sobolev Konstantin (2021-11)
    Rheological Response of Magnetorheological Cementitious Inks Tuned for Active Control in Digital Construction
  8. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  9. Douba AlaEddin, Kawashima Shiho (2021-11)
    Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing
  10. Dvorkin Leonid, Marchuk Vitaliy, Hager Izabela, Maroszek Marcin (2022-06)
    Design of Cement-Slag Concrete Composition for 3D Printing
  11. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  12. Harbouz Ilhame, Rozière Emmanuel, Yahia Ammar, Loukili Ahmed (2022-02)
    Printability-Assessment of Cement-Based Materials Based on Rheology, Hydration Kinetics, and Viscoelastic Properties
  13. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  14. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  15. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  16. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  17. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  18. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  19. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  20. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  21. Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
    Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing
  22. Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
    Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste
  23. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  24. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  25. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  26. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  27. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  28. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  29. Yang Huashan, Che Yujun (2022-01)
    Recycling of Aggregate Micro-Fines as a Partial Replacement for Fly-Ash in 3D Printing Cementitious Materials
  30. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  31. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  32. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  33. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing

10 Citations

  1. Janani Parthiban, Ganesh G. (2025-11)
    Synergistic Effects of Polypropylene Fibers on the Strength and Durability Properties of 3D Printed Concrete
  2. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  3. Yousaf Arslan, Khan Shoukat, Koç Muammer (2025-07)
    Material, Process, and Design Optimization of Local Earthen Soil Reinforced with Natural Fiber Waste and Nanoclay for 3DP of Functional Structures
  4. Mishra Sanjeet, Upadhyay Bikash, Das Bibhuti (2025-06)
    3D Printing Aspects of Fly Ash and GGBS Admixed Binary and Ternary Blended Cementitious Mortar
  5. Mishra Sanjeet, Upadhyay Bikash, Das B. (2025-06)
    Exploring the Role of Metakaolin in Binary and Ternary Blended 3D Printable Mortars:
    Deep Insights into Printability
  6. Kumar Sandeep, Kumar Abhishek, Pundir Aakanksha, Dwivedi Ashutosh et al. (2025-06)
    Low-Clay Soil as Fine Aggregate in 3D Printed Concrete:
    Insights into Fresh and Hardened Properties
  7. Sahoo Pitabash, Gupta Souradeep (2024-11)
    3D Printing with Geopolymer-Stabilized Excavated Earth:
    Enhancement of Printability and Engineering-Performance Through Controlled Retardation
  8. Gyawali Biva, Haghnazar Ramtin, Akula Pavan, Alba Kamran et al. (2024-10)
    A Review on 3D Printing with Clay and Sawdust/Natural Fibers:
    Printability, Rheology, Properties, and Applications
  9. Priyadarshani Suchi, Rao Roshan, Mani Monto (2024-08)
    Paradigm Shifts in Building Construction Priorities in the Last Decade
  10. Sahana C., Soda Prabhath, Dwivedi Ashutosh, Kumar Sandeep et al. (2024-07)
    3D Printing with Stabilized Earth:
    Material-Development and Effect of Carbon-Sequestration on Engineering-Performance

BibTeX
@article{soda_dwiv_saha_gupt.2024.Do3PSEBCMUES,
  author            = "Prabhath Ranjan Kumar Soda and Ashutosh Dwivedi and C. M. Sahana and Souradeep Gupta",
  title             = "Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil: Evaluation of Fresh and Hardened Properties",
  doi               = "10.1016/j.scitotenv.2024.171654",
  year              = "2024",
  journal           = "Science of the Total Environment",
  volume            = "924",
  pages             = "171654",
}
Formatted Citation

P. R. K. Soda, A. Dwivedi, C. M. Sahana and S. Gupta, “Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil: Evaluation of Fresh and Hardened Properties”, Science of the Total Environment, vol. 924, p. 171654, 2024, doi: 10.1016/j.scitotenv.2024.171654.

Soda, Prabhath Ranjan Kumar, Ashutosh Dwivedi, C. M. Sahana, and Souradeep Gupta. “Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil: Evaluation of Fresh and Hardened Properties”. Science of the Total Environment 924 (2024): 171654. https://doi.org/10.1016/j.scitotenv.2024.171654.