Properties and Testing of Printed Cement-Based Materials in Hardened State (2022-01)¶
, , , d' Hondt Mélody, , , , , , , ,
Contribution - Digital Fabrication with Cement-Based Materials, pp. 137-185
Abstract
3D printing is offering a totally new construction method, but an in-depth understanding of the consequences of the different production conditions compared to traditional formwork-based casting operations is required. Bulk material properties (intrinsic strength and durability) will follow the same fundamental material laws. However, in printed structures, the role of the interfaces will become increasingly important as they affect the mechanical performance, transport properties and durability behaviour. Additionally, the anisotropic nature of 3D printed structures implies that there are new opportunities to develop new methods of analysis. The aim of this chapter is to focus on the current practices for performance testing and to give an overview of the parameters which affect the hardened properties of a printed cementitious material.
¶
35 References
- Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Christ Susanne, Schnabel Martin, Vorndran Elke, Groll Jürgen et al. (2014-10)
Fiber-Reinforcement During 3D Printing - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Hack Norman, Lauer Willi (2014-04)
Mesh Mould:
Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
Particle-Bed 3D Printing in Concrete Construction:
Possibilities and Challenges - Marchment Taylor, Xia Ming, Dodd Elise, Sanjayan Jay et al. (2017-07)
Effect of Delay-Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Pierre Alexandre, Weger Daniel, Perrot Arnaud, Lowke Dirk (2018-01)
Penetration of Cement-Pastes into Sand-Packings During 3D Printing:
Analytical and Experimental Study - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials - Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography - Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Tian Wei, Han Nv (2018-04)
Pore Characteristics (>0.1mm) Of Non-Air-Entrained Concrete Destroyed by Freeze-Thaw-Cycles Based on CT Scanning and 3D Printing - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Weger Daniel, Baier Daniel, Straßer Alexander, Prottung Sophia et al. (2020-07)
Reinforced Particle-Bed Printing by Combination of the Selective Paste-Intrusion Method with Wire and Arc Additive Manufacturing:
A First Feasibility Study - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness
8 Citations
- Vasilić Ksenija (2025-02)
Standardization Aspects of Concrete 3D Printing - Licciardello Lucia, Soto Alejandro, Kaufmann Walter, Metelli Giovanni (2025-01)
Determining the Strength of 3D Printed Concrete with the Modified Slant-Shear-Test - Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
Sustainability Principles in 3D Concrete Printing:
Analysing Trends, Classifying Strategies, and Future Directions - Weger Daniel, Gartner Benjamin, Rausch Anne, Schießl-Pecka Angelika et al. (2024-09)
Realization of a Reinforced SPI Façade:
Direction-Dependent Material-Properties and Durability-Assessment - Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
Additive Manufacturing with Concrete:
Guidelines for Planning and Implementing Projects - Buswell Richard (2022-06)
CCR Digital Concrete 2022 SI:
Editorial - Flatt Robert, Wangler Timothy (2022-05)
On Sustainability and Digital Fabrication with Concrete - Weger Daniel, Gehlen Christoph, Korte Waldemar, Meyer-Brötz Fabian et al. (2022-02)
Building Rethought:
3D Concrete Printing in Building Practice
BibTeX
@inproceedings{putt_nere_mech_hond.2022.PaToPCBMiHS,
author = "Jolien van der Putten and Venkatesh Naidu Nerella and Viktor Mechtcherine and Mélody d' Hondt and Mohammed Sonebi and Daniel Weger and Zhendi Wang and Costantino Menna and Nicolas Roussel and Dirk Lowke and Kim van Tittelboom and Geert de Schutter",
title = "Properties and Testing of Printed Cement-Based Materials in Hardened State",
doi = "10.1007/978-3-030-90535-4_5",
year = "2022",
volume = "36",
pages = "137--185",
booktitle = "Digital Fabrication with Cement-Based Materials",
editor = "Nicolas Roussel and Dirk Lowke",
}
Formatted Citation
J. van der Putten, “Properties and Testing of Printed Cement-Based Materials in Hardened State”, in Digital Fabrication with Cement-Based Materials, 2022, vol. 36, pp. 137–185. doi: 10.1007/978-3-030-90535-4_5.
Putten, Jolien van der, Venkatesh Naidu Nerella, Viktor Mechtcherine, Mélody d' Hondt, Mohammed Sonebi, Daniel Weger, Zhendi Wang, et al.. “Properties and Testing of Printed Cement-Based Materials in Hardened State”. In Digital Fabrication with Cement-Based Materials, edited by Nicolas Roussel and Dirk Lowke, 36:137–85, 2022. https://doi.org/10.1007/978-3-030-90535-4_5.