Skip to content

3D Printing in Construction (2021-04)

Current Status, Implementation Hindrances, and Development Agenda

10.1155/2021/6665333

 Ning Xin,  Liu Tong,  Wu Chunlin,  Wang Chao
Journal Article - Advances in Civil Engineering, Vol. 2021, pp. 1-12

Abstract

3D printing (3DP) is regarded as an innovation that contributes to automation in civil engineering and offers benefits in design, greenness, and efficiency. It is necessary to objectively analyze the current status and challenges associated with 3DP and identify future research directions to properly understand its construction applications. Previous research has focused more on the technical dimension of 3DP; however, the nontechnical dimension of the technology may hinder its implementation and thus must be paid particular attention to. This study presents a systematic review of the existing literature from both technical and nontechnical dimensions by combining quantitative and qualitative studies. The quantitative study was conducted using scientometric methods. The qualitative study analyzed information, including the technical research status and nontechnical challenges and trends. Two aspects oftechnical research status are presented, including materials and processes. In addition, nontechnical challenges and trends from the economic, environmental, social, and legislative aspects are proposed. This study provides a comprehensive agenda to advance 3DP in construction and proposes research interests, challenges, and future topics. It is intended to help construction practitioners systematically master existing processes and materials and assess the application degree and necessity of 3DP.

49 References

  1. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  2. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  3. Bhardwaj Abhinav, Jones Scott, Kalantar Negar, Pei Zhijian et al. (2019-06)
    Additive Manufacturing Processes for Infrastructure Construction:
    A Review
  4. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  5. Buswell Richard, Thorpe Tony, Soar Rupert, Gibb Alistar (2008-05)
    Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction
  6. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  7. Davtalab Omid, Kazemian Ali, Khoshnevis Behrokh (2018-01)
    Perspectives on a BIM-Integrated Software Platform for Robotic Construction through Contour Crafting
  8. Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
    Applications of Additive Manufacturing in the Construction Industry:
    A Forward-Looking Review
  9. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  10. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  11. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  12. He Rui, Li Mingkai, Gan Vincent, Ma Jun (2020-08)
    BIM-Enabled Computerized Design and Digital Fabrication of Industrialized Buildings:
    A Case Study
  13. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  14. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  15. Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
    Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing
  16. Kothman Ivo, Faber Niels (2016-09)
    How 3D Printing Technology Changes the Rules of the Game:
    Insights from the Construction Sector
  17. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  18. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  19. Lee Dongyoun, Kim Hakmin, Sim Joonhyeok, Lee Dongmin et al. (2019-04)
    Trends in 3D Printing Technology for Construction Automation Using Text Mining
  20. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  21. Lim Jian, Weng Yiwei, Pham Quang-Cuong (2019-10)
    3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork
  22. Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
    Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing
  23. Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
    Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine
  24. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  25. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  26. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  27. Lu Bing, Zhu Weiping, Weng Yiwei, Liu Zhixin et al. (2020-02)
    Study of MgO-Activated-Slag as a Cementless Material for Sustainable Spray-Based 3D Printing
  28. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  29. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  30. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  31. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  32. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  33. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  34. Perkins Isaac, Skitmore Martin (2015-03)
    Three-Dimensional Printing in the Construction Industry:
    A Review
  35. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  36. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  37. Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
    3D Printed Concrete:
    Applications, Performance, and Challenges
  38. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  39. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  40. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  41. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  42. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  43. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  44. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  45. Weng Yiwei, Mohamed Nisar, Lee Brian, Gan Nicole et al. (2021-02)
    Extracting BIM Information for Lattice Tool-Path-Planning in Digital Concrete Printing with Developed Dynamo Script:
    A Case Study
  46. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  47. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  48. Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
    Life Cycle Assessment of 3D Printing Geopolymer Concrete:
    An Ex‐Ante Study
  49. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots

17 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Simwanda Lenganji, David Abayomi, Gatheeshgar Perampalam, Olalusi Oladimeji et al. (2025-10)
    Optimisation of Interlayer Bond Strength in 3D-Printed Concrete Using Response Surface Methodology and Artificial Neural Networks
  4. Casanova Euro, Hidalgo Nelson, Valdebenito Michael, Forcael Eric et al. (2025-04)
    Overturning Resistance of Concrete Curved Walls Manufactured with Additive Construction
  5. Latifiilkhechi Leva, Aminbakhsh Saman, Akcay Emre (2025-03)
    Investigating the Barriers to the Adoption of 3D Printing Technology in the Turkish Construction Industry
  6. Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
    Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies
  7. Hutyra Adam, Bańkosz Magdalena, Tyliszczak Bożena (2024-08)
    Technology for Automated Production of High-Performance Building Compounds for 3D Printing
  8. Balkhy Wassim, Valera Elias, Karmaoui Dorra, Lafhaj Zoubeir et al. (2024-06)
    Motives and Barriers for Offsite and Onsite Construction 3D Printing
  9. Yu Haoxuan, Wen Bodong, Zahidi Izni, Chow Ming et al. (2024-04)
    Constructing the Future:
    Policy-Driven Digital Fabrication in China's Urban Development
  10. Zhou Yiyi, Luo Haoran, Anand Kamal, Singh Amardeep et al. (2024-02)
    Sustainable Use of Ultrafine Recycled Glass in Additive Manufactured Reactive-Powder Concrete
  11. Živković Milijana, Žujović Maša, Milošević Jelena (2023-09)
    Architectural 3D Printed Structures Created Using Artificial Intelligence:
    A Review of Techniques and Applications
  12. Balkhy Wassim, Bing Scott, Babidi Saad, Lafhaj Zoubeir et al. (2023-07)
    The Analysis of Lean Wastes in Construction 3D Printing:
    A Case Study
  13. Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
    Sustainable Non-Conventional Concrete 3D Printing:
    A Review
  14. Ambily Parukutty, Kaliyavaradhan Senthil, Rajendran Neeraja (2023-05)
    Top Challenges to Widespread 3D Concrete Printing Adoption:
    A Review
  15. Mogaji Iseoluwa, Mewomo Modupe, Toyin James (2023-05)
    Key Barriers to the Adoption of 3D Printing Innovation in Construction:
    A Review of Empirical Studies
  16. Žujović Maša, Obradović Radojko, Rakonjac Ivana, Milošević Jelena (2022-08)
    3D Printing Technologies in Architectural Design and Construction:
    A Systematic Literature Review
  17. Putten Jolien, Hoogeveen Maartje, Bruurs Marijn, Laagland Hans (2022-06)
    3DCP Structures:
    The Roadmap to Standardization

BibTeX
@article{ning_liu_wu_wang.2021.3PiC,
  author            = "Xin Ning and Tong Liu and Chunlin Wu and Chao Wang",
  title             = "3D Printing in Construction: Current Status, Implementation Hindrances, and Development Agenda",
  doi               = "10.1155/2021/6665333",
  year              = "2021",
  journal           = "Advances in Civil Engineering",
  volume            = "2021",
  pages             = "1--12",
}
Formatted Citation

X. Ning, T. Liu, C. Wu and C. Wang, “3D Printing in Construction: Current Status, Implementation Hindrances, and Development Agenda”, Advances in Civil Engineering, vol. 2021, pp. 1–12, 2021, doi: 10.1155/2021/6665333.

Ning, Xin, Tong Liu, Chunlin Wu, and Chao Wang. “3D Printing in Construction: Current Status, Implementation Hindrances, and Development Agenda”. Advances in Civil Engineering 2021 (2021): 1–12. https://doi.org/10.1155/2021/6665333.