Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion (2024-06)¶
Shen Jing, Li Yujia, Zhang Xiaoman, , Huang Chaohui, Luo Wei
Journal Article - Buildings, Vol. 14, Iss. 7, No. 1958
Abstract
Due to the molding-free property and dry shrinkage of extrusion-based three-dimensional printable concrete (3DPC), the precision issues of 3DPC have not been solved effectively. One of the viable solutions for 3DPC precision improvement is to print using ultra-thin filaments. The challenges of ultra-thin-filament printing are extrudability, flowability, and fast solidification. To overcome these challenges and enhance precision, a customized 3D concrete printer with an ultra-thin diameter nozzle (6 mm) and fully sealed extrusion system was developed, and the mix design of ultra-thin-filament 3DPC (UTF-3DPC) was studied, including ingredients such as fly ash (FA), silica fume (SF), ordinary Portland cement (OPC), sodium dodecyl sulfate and cellulose (SDSC), water reducer, water, and sand. The function of UTF-3DPCs flowability and fast solidification with the proportion of water and SDSC was explored to obtain the optimal mix design. The standard compressive and flexural strengths of UTF-3DPC specimens were compared with the mold-cast vibrated and the mold-cast non-vibrated concrete. Their meso-scale and micro-scale structures were analyzed to expose the strength mechanism, according to the scanning electron microscope (SEM) images. A suitable mix design of UTF-3DPC was obtained and UTF-3DPC strength reached 80% of standard mold-cast concrete. The findings reported here provide a pathway to improve the precision of 3DPC and extend the application of 3D printing technology in engineering.
¶
33 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Bai Gang, Wang Li, Wang Fang, Ma Guowei (2021-08)
In-Process Reinforcing Method:
Dual 3D Printing Procedure for Ultra-High-Performance Concrete Reinforced Cementitious Composites - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications - Ducoulombier Nicolas, Mesnil Romain, Carneau Paul, Demont Léo et al. (2021-05)
The “Slugs-Test” for Extrusion-Based Additive Manufacturing:
Protocol, Analysis and Practical Limits - Furet Benoît, Poullain Philippe, Garnier Sébastien (2019-04)
3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete - Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements - Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
3D Printing of Buildings and Building Components as the Future of Sustainable Construction? - Jiang Xiongzhi, Li Yujia, Yang Zhe, Li Yangbo et al. (2024-02)
Harnessing Path-Optimization to Enhance the Strength of Three-Dimensional Printed Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Lowke Dirk, Vandenberg Aileen, Pierre Alexandre, Thomas Amaury et al. (2021-07)
Injection 3D Concrete Printing in a Carrier Liquid:
Underlying Physics and Applications to Lightweight Space Frame Structures - Lu Bing, Li Mingyang, Wong Teck, Qian Shunzhi (2021-02)
Effect of Printing Parameters on Material-Distribution in Spray-Based 3D Concrete Printing (S-3DCP) - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers - Marchment Taylor, Sanjayan Jay (2021-04)
Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations - Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
Underwater 3D Printing of Cement-Based Mortar - Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
Additive Manufacturing and Performance of Architectured Cement-Based Materials - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
3D Printing of Earth-Based Materials:
Processing Aspects - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Salman Nazar, Ma Guowei, Ijaz Nauman, Wang Li (2021-04)
Importance and Potential of Cellulosic Materials and Derivatives in Extrusion-Based 3D Concrete Printing:
Prospects and Challenges - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Zhang Nan, Xia Ming, Sanjayan Jay (2021-10)
Short-Duration Near-Nozzle Mixing for 3D Concrete Printing
2 Citations
- Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
A Bibliometric and Systematic Review - Aman Abdulkerim, Yang Zhe, Xin Yubo, Zhang Xiaoman et al. (2025-04)
Introducing Magnesium Oxide into 3D Printed Concrete to Mitigate Dry-Shrinkage
BibTeX
@article{shen_li_zhan_li.2024.TDPCbaUTNaFSE,
author = "Jing Shen and Yujia Li and Xiaoman Zhang and Yangbo Li and Chaohui Huang and Wei Luo",
title = "Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion",
doi = "10.3390/buildings14071958",
year = "2024",
journal = "Buildings",
volume = "14",
number = "7",
pages = "1958",
}
Formatted Citation
J. Shen, Y. Li, X. Zhang, Y. Li, C. Huang and W. Luo, “Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion”, Buildings, vol. 14, no. 7, p. 1958, 2024, doi: 10.3390/buildings14071958.
Shen, Jing, Yujia Li, Xiaoman Zhang, Yangbo Li, Chaohui Huang, and Wei Luo. “Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion”. Buildings 14, no. 7 (2024): 1958. https://doi.org/10.3390/buildings14071958.