Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application (2023-07)¶
, Mutalib Azrul, , , Algaifi Hassan
Journal Article - Buildings, Vol. 13, Iss. 8, No. 1949
Abstract
Although the use of 3D printing in civil engineering has grown in popularity, one of the primary challenges associated with it is the absence of steel bars inside the printed mortar. As a result, developing 3D printing mortar with ultra-high compressive, flexural, and tensile strengths is critical. In the present study, an ultra-high-performance mortar incorporating silica fume (SF) and graphene nanoplatelets (GNPs) was developed for 3D printing application. The concrete mixture added SF to the concrete mixture in the range between 0% and 20%, while GNPs were added as a partial replacement by cement weight from 0.5% to 2%. The flowability and the machinal properties of the proposed mortar, including compressive (CS), tensile (TS), and flexural strength (FS), were investigated and assessed. Microstructure analysis involving FESEM and EDX was also investigated and evaluated, while response surface methodology (RSM) was considered to predict and optimize the optimum value of GNPs and SF. Workability results show that the flowability is reduced when the amount of graphene increases. Based on the predicted and experimental results, ultra-high-strength mortar can be developed by including 1.5% of GNPs and 20% of SF, in which the CS jumped from 70.7 MPa to 133.3 MPa at the age of 28 days. The FS and TS were 20.66 MPa and 14.67 MPa compared to the control mix (9.75 MPa and 6.36 MPa), respectively. This favorable outcome was credited to the pozzolanic activity of SF and the effectiveness of GNPs in compacting the pores and bridging the cracks at the nanoscale level, which were verified by FE-SEM and EDX. In addition, the developed quadratic equations proved their accuracy in predicting and optimizing the mechanical properties with low error (less than 0.09) and high correlation (R2 > 0.97). It can be concluded that the current work is an important step forward in developing a 3D printing mortar. The lack of reinforcement in the printed mortar structure has been a considerable difficulty, and the SF and GNPs have increased the compressive, flexural, and tensile strengths of the mortar. Thus, these improvements will encourage the industry to utilize sustainable materials to produce more affordable housing.
¶
17 References
- Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
Potential Benefits of Digital Fabrication for Complex Structures:
Environmental Assessment of a Robotically Fabricated Concrete Wall - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Martens Pascal, Mathot Maarten, Bos Freek, Coenders Jeroen (2017-06)
Optimizing 3D Printed Concrete Structures Using Topology Optimization - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar - Sikora Paweł, Chung Sang-Yeop, Liard Maxime, Lootens Didier et al. (2021-02)
The Effects of Nano-Silica on the Fresh and Hardened Properties of 3D Printable Mortars - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete
15 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Basith Mydeen Pitchai Mohamed Abdul (2025-12)
Polymer-Enhanced Composites for 3D Concrete Printing:
A Review of Materials, Processes, and Performance - Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
Rheology to Microstructure and Eco-Functionality - Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
Recycled Components in 3D Concrete Printing Mixes:
A Review - Luo Surong, Jin Wenhao, Zhang Zhaorui, Zhang Kaijian (2025-09)
Constitutive Relationship of 3D Printed Fiber Reinforced Recycled Sand Concrete Under Uniaxial Compression - Lin Xing-Tao, Xu Shuhao, Chen Xiangsheng (2025-08)
Optimization of Building Structures Based on Additive Manufacturing:
A Review - Girskas Giedrius, Kligys Modestas (2025-06)
3D Concrete Printing Review:
Equipment, Materials, Mix Design, and Properties - Jalil Siti Nur Natasha Abdul, Rizal Alias Ahmad, Alias Aizat (2025-06)
Challenges and Strategies in Implementing 3D Concrete Printing (3DCP) Technology in Malaysia:
Materials and Design Codes - Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders - Nassrullah Ghaith, Ali Mohd, Rub Rashid, Cho Cung-Suk et al. (2025-03)
Optimizing Cement-Based Material Formulation for 3D Printing:
Integrating Carbon Nanotubes and Silica Fume - Ali Mohd, Rub Rashid, Banat Fawzi, Kim Tae-Yeon (2024-11)
Enhancing the Printing Quality and Mechanical Properties of 3D Printed Cement Composites with Date-Syrup-Based Graphene-Coated-Sand Hybrid - Prasittisopin Lapyote (2024-11)
How 3D Printing Technology Makes Cities Smarter:
A Review, Thematic Analysis, and Perspectives - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
A Review - Ungureanu Dragoș, Onuțu Cătălin, Țăranu Nicolae, Vornicu Nicoleta et al. (2023-11)
Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers
BibTeX
@article{sala_muta_kais_syam.2023.DoUHPSFBMIGNPf3CPA,
author = "Husam Azzam Abdullah Salah and Azrul A. Mutalib and Amrul B. M. A Kaish and Agusril Syamsir and Hassan Amer Algaifi",
title = "Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application",
doi = "10.3390/buildings13081949",
year = "2023",
journal = "Buildings",
volume = "13",
number = "8",
pages = "1949",
}
Formatted Citation
H. A. A. Salah, A. A. Mutalib, A. B. M. A. Kaish, A. Syamsir and H. A. Algaifi, “Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application”, Buildings, vol. 13, no. 8, p. 1949, 2023, doi: 10.3390/buildings13081949.
Salah, Husam Azzam Abdullah, Azrul A. Mutalib, Amrul B. M. A Kaish, Agusril Syamsir, and Hassan Amer Algaifi. “Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application”. Buildings 13, no. 8 (2023): 1949. https://doi.org/10.3390/buildings13081949.