Skip to content

Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures (2022-06)

10.3390/en15124230

 Nemova Darya, Kotov Evgeny, Andreeva Darya, Khorobrov Svyatoslav, Olshevskiy Vyacheslav, Vasileva Irina, Zaborova Daria, Musorina Tatiana
Journal Article - Energies, Vol. 15, Iss. 12, No. 4230

Abstract

Three-dimensional printing, or additive manufacturing, is one of the modern techniques emerging in the construction industry. Three-Dimensional Printed Concrete (3DPC) technology is currently evolving with high demand amongst researchers, and the integration of modular building systems with this technology would provide a sustainable solution to modern construction challenges. This work investigates and develops energy-efficient 3D-printable walls that can be implemented worldwide through energy efficiency and sustainability criteria. Numerical research and experimental investigations, bench tests with software packages, and high-precision modern equipment have been used to investigate the thermal performance of 3DPC envelopes with different types of configurations, arrangements of materials, and types of insulation. The research findings showed that an innovative energy-efficient ventilated 3DPC envelope with a low thermal conductivity coefficient was developed following the climatic zone. The annual costs of heat energy consumed for heating and carbon footprint were determined in the software package Revit Insight to assess the energy efficiency of the 3D-printed building. The thermal properties of the main wall body of the tested 3D-printed walls were calculated with on-site monitoring data. The infrared thermography technique detected heterogeneous and non-uniform temperature distributions on the exterior wall surface of the 3DPC tested envelopes.

15 References

  1. Alkhalidi Ammar, Hatuqay Dina (2020-02)
    Energy Efficient 3D Printed Buildings:
    Material and Techniques Selection Worldwide Study
  2. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  3. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  4. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  5. Buswell Richard, Thorpe Tony, Soar Rupert, Gibb Alistar (2008-05)
    Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction
  6. Craveiro Flávio, Bártolo Helena, Gale Andrew, Duarte José et al. (2017-07)
    A Design Tool for Resource-Efficient Fabrication of 3D Graded Structural Building Components Using Additive Manufacturing
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  9. Klyuev Sergey, Klyuev Alexander, Shorstova Elena (2021-02)
    Technology of 3D Printing of Fiber-Reinforced Mixtures
  10. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  11. Marais Hannelie, Christen Heidi, Cho Seung, Villiers Wibke et al. (2021-03)
    Computational Assessment of Thermal Performance of 3D Printed Concrete Wall Structures with Cavities
  12. Nazarian Shadi, Duarte José, Bilén Sven, Memari Ali et al. (2019-11)
    Additive Manufacturing of Architectural Structures:
    An Interplay Between Materials, Systems, and Design
  13. Pan Yifan, Zhang Yulu, Zhang Dakang, Song Yuying (2021-05)
    3D Printing in Construction:
    State of the Art and Applications
  14. Prasittisopin Lapyote, Pongpaisanseree Kittisak, Jiramarootapong Patiphat, Snguanyat Chalermwut (2020-07)
    Thermal- and Sound-Insulation of Large-Scale 3D Extrusion-Printing Wall-Panel
  15. Suntharalingam Thadshajini, Gatheeshgar Perampalam, Upasiri Irindu, Poologanathan Keerthan et al. (2021-02)
    Numerical Study of Fire and Energy Performance of Innovative Lightweight 3D Printed Concrete Wall-Configurations in Modular Building System

18 Citations

  1. Wang Hanmo, Wan Yujia, Owyong Shawn, Connie Lim En et al. (2026-01)
    Towards Low-Carbon Construction:
    Nature-Inspired Internal Patterns for Thermal Insulation in Lightweight Concrete Component Cast Using 3D-Printed Formwork
  2. Latorraca Tássia, Rangel Bárbara, Guimarães Ana (2025-12)
    Optimizing 3D-Printed Concrete Panels’ Thermal Performance with Materials, Metrics, and Generative Design
  3. Wang Jinjin, Li Shouzhen, Qiu Jin, Chen Cheng et al. (2025-12)
    Experimental Investigation on Thermal Performance of 3D Printed Concrete Elements Subjected to Radiant Heating
  4. Geng Renyu, Jiang Jinming, Du Pengcong, Zhang Huiliang et al. (2025-11)
    Multiscale Thermal Optimization of 3D-Printed Walls:
    Integrating Structure, Material, and Process with Fire-Thermal Synergy
  5. Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
    Recycled Components in 3D Concrete Printing Mixes:
    A Review
  6. Liu Ruiqing, Du Hongjian (2025-09)
    Optimizing Thermal Insulation Through Geometric Design:
    Comparative Analysis of Normal and Lightweight 3D Printed Concrete Wall Patterns
  7. Zhou Biao, Zhou Hongru, Yoshioka Hideki, Noguchi Takafumi et al. (2025-04)
    Mechanical and Microstructure Evolution of 3D Printed Concrete Interlayer at Elevated Temperatures
  8. Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
    3D Printing Technology in Concrete Construction
  9. Dey Dhrutiman, Panda Biranchi, Shukla Yash, Rawal Rajan (2025-03)
    A Comprehensive Assessment of Thermal Performance of 3D Printed Concrete Lattice Walls
  10. Suphunsaeng Kantawich, Prasittisopin Lapyote, Pethrung Sirichai, Pansuk Withit (2025-03)
    Fire Performance Evaluation of 3D-Printed Concrete Walls:
    A Combined Full-Scale and Numerical Modeling Approach
  11. Olivo Nik, Piccioni Valeria, Milano Francesco, Gramazio Fabio et al. (2025-02)
    Thermal Enhancement of Hollow-Core 3DP Through Nozzle Design Customization
  12. Chamatete Kunda, Yalçınkaya Çağlar (2024-10)
    Numerical Assessment of Thermal Bridging Effects in 3D Printed Foam-Concrete Walls
  13. Sovetova Meruyert, Calautit John (2024-09)
    Effect of the Printing Process on Thermal Performance of 3D Printed Structures
  14. Sovetova Meruyert, Kaiser Calautit John (2024-08)
    Thermal and Energy Efficiency in 3D Printed Buildings:
    Review of Geometric Design, Materials and Printing Processes
  15. Rubeis Tullio, Ciccozzi Annamaria, Giusti Letizia, Ambrosini Dario (2024-07)
    On the Use of 3D Printing to Enhance the Thermal Performance of Building Envelope:
    A Review
  16. Sovetova Meruyert, Calautit John (2024-07)
    Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures
  17. Chamatete Kunda, Yalçınkaya Çağlar (2024-03)
    Numerical Evaluation on Thermal Performance of 3D Printed Concrete Walls:
    The Effects of Lattice-Type, Filament-Width and Granular-Filling-Material
  18. Akman Arabella, Sadhu Ayan (2023-10)
    Recent Development of 3D Printing Technology in Construction Engineering

BibTeX
@article{nemo_koto_andr_khor.2022.ESotTPo3PES,
  author            = "Darya Nemova and Evgeny Vladimirovich Kotov and Darya Andreeva and Svyatoslav Khorobrov and Vyacheslav Olshevskiy and Irina Vasileva and Daria Zaborova and Tatiana Musorina",
  title             = "Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures",
  doi               = "10.3390/en15124230",
  year              = "2022",
  journal           = "Energies",
  volume            = "15",
  number            = "12",
  pages             = "4230",
}
Formatted Citation

D. Nemova, “Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures”, Energies, vol. 15, no. 12, p. 4230, 2022, doi: 10.3390/en15124230.

Nemova, Darya, Evgeny Vladimirovich Kotov, Darya Andreeva, Svyatoslav Khorobrov, Vyacheslav Olshevskiy, Irina Vasileva, Daria Zaborova, and Tatiana Musorina. “Experimental Study on the Thermal Performance of 3D Printed Enclosing Structures”. Energies 15, no. 12 (2022): 4230. https://doi.org/10.3390/en15124230.