Investigation on Structural Build-Up of 3D Printable Foam-Concrete (2020-07)¶
, , , ,
Contribution - Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication, pp. 301-311
Abstract
Over the last decade the use of foam concrete in the construction industry has become popular due to its high thermal and acoustic insulation capacity in combination with sufficient strength characteristics. The use of foam concrete in 3D printing (3D Foam Concrete Printing) is a perspective approach which should enable automated freeform construction without formwork and at the same time would contribute to sustainability and energy efficiency of the structures. Since 3D-printing requires very specific rheological properties of foam concrete in its fresh state, a systematic research on this subject is needed. For this purpose, foam concrete mixtures containing more than 35 vol% protein-based foam and fresh density of approx. 1200 kg/m3 were developed and investigated with respect to their suitability for 3D printing by extrusion-based selective material deposition. Constant shear rate rheometer tests were performed to determine static yield stress and critical strain at flow onset at concrete ages of 30 min to 150 min, the time interval specifically relevant for the 3D printing process. Finally, the estimation of structural build-up was verified by manufacturing 800 mm long foam concrete walls until their collapse.
¶
11 References
- Falliano Devid, Gugliandolo Ernesto, Domenico Dario, Ricciardi Giuseppe (2018-09)
Experimental Investigation on the Mechanical Strength and Thermal Conductivity of Extrudable Foamed Concrete and Preliminary Views on Its Potential Application in 3D Printed Multilayer Insulating Panels - Flatt Robert, Wangler Timothy (2018-08)
Editorial for Special Issue on Digital Concrete - Ivanova Irina, Mechtcherine Viktor (2020-01)
Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials - Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication - Markin Slava, Šahmenko Genādijs, Nerella Venkatesh, Näther Mathias et al. (2019-11)
Investigations on the Foam-Concrete Production Techniques Suitable for 3D Printing with Foam-Concrete - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Nerella Venkatesh, Beigh Mirza, Fataei Shirin, Mechtcherine Viktor (2018-11)
Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Valente Marco, Sibai Abbas, Sambucci Matteo (2019-09)
Extrusion-Based Additive Manufacturing of Concrete Products:
Revolutionizing and Remodeling the Construction Industry
15 Citations
- Müller Niklas, Claßen Martin (2025-10)
Additive Manufacturing of Topology-Optimized Lightweight Slabs Using Foam Concrete - Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement - Elango K., Saravanakumar R., Vivek D., Yuvaraj S. et al. (2025-01)
A Critical Review of Fresh, Hardened and Durability Properties of 3D Printing Concrete - Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology - Parmigiani Silvia, Falliano Devid, Moro Sandro, Ferro Giuseppe et al. (2024-06)
3D Printed Multi-Functional Foamed Concrete Building Components:
Material-Properties, Component Design, and 3D Printing Application - Rudziewicz Magdalena, Maroszek Marcin, Góra Mateusz, Dziura Paweł et al. (2023-09)
Feasibility Review of Aerated Materials Application in 3D Concrete Printing - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
A Review - Boddepalli Uday, Gandhi Indu, Panda Biranchi (2022-12)
Stability of Three-Dimensional Printable Foam-Concrete as Function of Surfactant Characteristics - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Cho Seung, Rooyen Algurnon, Kearsley Elsabe, Zijl Gideon (2021-12)
Foam Stability of 3D Printable Foamed Concrete - Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
3D Printing with Foam-Concrete:
From Material Design and Testing to Application and Sustainability - Dielemans Gido, Briels David, Jaugstetter Fabian, Henke Klaudius et al. (2021-04)
Additive Manufacturing of Thermally Enhanced Lightweight Concrete Wall Elements with Closed Cellular Structures - Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review
BibTeX
@inproceedings{mark_ivan_fata_rei.2020.IoSBUo3PFC,
author = "Slava Viacheslav Markin and Irina Ivanova and Shirin Fataei and Silvia Reißig and Viktor Mechtcherine",
title = "Investigation on Structural Build-Up of 3D Printable Foam-Concrete",
doi = "10.1007/978-3-030-49916-7_31",
year = "2020",
volume = "28",
pages = "301--311",
booktitle = "Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020",
editor = "Freek Paul Bos and Sandra Simaria de Oliveira Lucas and Robert Johannes Maria Wolfs and Theo A. M. Salet",
}
Formatted Citation
S. V. Markin, I. Ivanova, S. Fataei, S. Reißig and V. Mechtcherine, “Investigation on Structural Build-Up of 3D Printable Foam-Concrete”, in Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, 2020, vol. 28, pp. 301–311. doi: 10.1007/978-3-030-49916-7_31.
Markin, Slava Viacheslav, Irina Ivanova, Shirin Fataei, Silvia Reißig, and Viktor Mechtcherine. “Investigation on Structural Build-Up of 3D Printable Foam-Concrete”. In Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, edited by Freek Paul Bos, Sandra Simaria de Oliveira Lucas, Robert Johannes Maria Wolfs, and Theo A. M. Salet, 28:301–11, 2020. https://doi.org/10.1007/978-3-030-49916-7_31.