Skip to content

The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios (2024-01)

10.1016/j.jobe.2024.108484

 Liu Qiong,  Cheng Shengbo,  Peng Bin,  Chen Kailun,  Sun Chang,  Tang Huilin
Journal Article - Journal of Building Engineering, No. 108484

Abstract

This study achieved the synchronized reinforcement of 3D printed mortar with steel cables by modifying the printing equipment. Recycled sintered brick powder replaced 30 % of cement in the 3D printed mortar mixture. The optimal range for the open time was determined through flowability tests and preliminary tests, which ranged from 10 to 40 min. Ways to improve the reinforcement ratio without compromising buildability were explored. The bond strength between the steel cables and the printed mortar was tested and found to be approximately 2–2.5 MPa. The flexural strength of the printed beams with steel cable reinforcement increased by 172%–357 %, and multiple cracks occurred at the mid-span during the failure process. A correction formula for the flexural strength was provided, with calculated values showing an error within 12 % of the test values.

34 References

  1. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  2. Bos Freek, Dezaire Steven, Ahmed Zeeshan, Hoekstra Anne et al. (2020-07)
    Bond of Reinforcement-Cable in 3D Printed Concrete
  3. Buchli Jonas, Giftthaler Markus, Kumar Nitish, Lussi Manuel et al. (2018-07)
    Digital In-Situ Fabrication:
    Challenges and Opportunities for Robotic In-Situ Fabrication in Architecture, Construction, and Beyond
  4. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  5. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  6. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  9. Li Zhijian, Ma Guowei, Wang Fang, Wang Li et al. (2021-10)
    Expansive Cementitious Materials to Improve Micro-Cable-Reinforcement Bond in 3D Concrete Printing
  10. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  11. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  12. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  13. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  14. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  15. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  16. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  17. Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
    Integrating Reinforcement in Digital Fabrication with Concrete:
    A Review and Classification Framework
  18. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  19. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  20. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  21. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  22. Perrot Arnaud, Rangeard Damien, Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Extrusion of Cement-Based Materials:
    An Overview
  23. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  24. Prasad Kudrekodlu, Vasugi V., Senthil Kumaran G. (2023-02)
    Application of 3D Printing Concepts in the Architecture Engineering and Construction Industry:
    A Scientometric Review
  25. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  26. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  27. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  28. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  29. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  30. Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
    Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces
  31. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  32. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  33. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  34. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites

5 Citations

  1. Liu Renlong, Cheng Zhangqi (2025-10)
    Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
    Influencing Factors and Mechanisms
  2. Disu Oluwatimilehin, Ismail Sikiru, Wood Luke, Chrysanthou Andreas et al. (2025-08)
    Experimental Study on Buildability of 3D-Printed Cement-Based Structures Using Aluminium Sulphate
  3. Motiani Ronak, Sylvain Saha, Dalal Sejal, Vora Jay et al. (2025-08)
    Innovative Reinforcement Techniques for 3D-Printed Concrete:
    The Impact of Shape Memory Alloys on Flexural Strength and Crack Mitigation
  4. Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
    Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
    A Systematic Review
  5. Lu Yue, Xiao Jianzhuang, Li Yan (2024-03)
    3D Printing Recycled Concrete Incorporating Plant-Fibers:
    A Comprehensive Review

BibTeX
@article{liu_chen_peng_chen.2024.TBaFPo3PRMRwSSCUDRR,
  author            = "Qiong Liu and Shengbo Cheng and Bin Peng and Kailun Chen and Chang Sun and Huilin Tang",
  title             = "The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios",
  doi               = "10.1016/j.jobe.2024.108484",
  year              = "2024",
  journal           = "Journal of Building Engineering",
  pages             = "108484",
}
Formatted Citation

Q. Liu, S. Cheng, B. Peng, K. Chen, C. Sun and H. Tang, “The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios”, Journal of Building Engineering, p. 108484, 2024, doi: 10.1016/j.jobe.2024.108484.

Liu, Qiong, Shengbo Cheng, Bin Peng, Kailun Chen, Chang Sun, and Huilin Tang. “The Buildability and Flexural Properties of 3D Printed Recycled Mortar Reinforced with Synchronized Steel-Cable Under Different Reinforcement Ratios”. Journal of Building Engineering, 2024, 108484. https://doi.org/10.1016/j.jobe.2024.108484.