3D Printing of Circular Materials (2023-04)¶
, Jassim Muhammad, , , Bayer Ismail, ,
Journal Article - Case Studies in Construction Materials
Abstract
The use of 3D printing in construction activities can help to reduce waste, lower energy consumption, and minimize the environmental impact of building projects. As technology continues to advance, it has the potential to play a major role in the development of cleaner, more sustainable production processes in the construction industry. For each such innovation, it is essential to ensure its environmental sustainability at an early stage of development. This study aims to assess the potential environmental advantages and disadvantages of newly developed construction and demolition waste (CDW)-based geopolymer materials for 3D printing of builtenvironment structures. The study identifies potential "hot spots" of the developed process where environmental impact is highest and develops strategies to reduce or mitigate negative impacts. Life Cycle Assessment (LCA) was carried out for three cases of CDW-based 3D printed structures, Portland cement-based 3D printed structures, and conventional masonry construction methods and materials, to analyze the environmental impact of CDW-based 3D-printed designs and their comparative analysis. The results showed that geopolymer-based 3D printed construction resulted in the lowest global warming potential of 488 [kg CO2 eq] as compared to 595.6 [kg CO2 eq] for ordinary Portland cement-based structure and 533.7 [kg CO2 eq] for conventional masonry construction of the equivalent structure. The main environmental "hot spot" identified for the geopolymer-based 3D printed construction process was the amount of electrical energy required for the mechanical processing of waste materials, which was more than 61% of the total GWP impact. In addition to decreasing solid CDW, the developed approach has significant potential for improvement by using more sustainable energy sources and reducing the amount of solid CDW generated.
¶
12 References
- Demiral Nazim, Ozkan Ekinci Mehmet, Şahin Oğuzhan, İlcan Hüseyin et al. (2022-10)
Mechanical Anisotropy Evaluation and Bonding Properties of 3D Printable Construction and Demolition Waste-Based Geopolymer Mortars - İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing - Khan Shoukat, Koç Muammer (2022-10)
Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
The Underlying Physics, Potential, and Challenges - Khan Shoukat, Koç Muammer (2023-03)
Buildability-Analysis of 3D Concrete Printing Process:
A Parametric Study Using Design of Experiment-Approach - Mir Namra, Khan Shoukat, Kul Anil, Şahin Oğuzhan et al. (2022-08)
Life Cycle Assessment of Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
Engineering, Environmental and Economic Feasibility - Panda Biranchi, Mohamed Nisar, Tan Ming (2018-04)
Effect of 3D Printing on Mechanical Properties of Fly Ash-Based Inorganic Geopolymer - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
Current Challenges and Future Potential of 3D Concrete Printing - Şahin Oğuzhan, İlcan Hüseyin, Ateşli Anıl, Kul Anil et al. (2021-05)
Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing - Tran Mien, Vu Tran, Nguyen Thi (2023-01)
Simplified Assessment for One-Part 3D Printable Geopolymer Concrete Based on Slump and Slump-Flow Measurements
20 Citations
- Raza Ali, Tan Binglin, Jiajia Zhou, Umar Muhammad et al. (2025-11)
Evaluation of Mechanical and Microstructural Properties of Sustainable 3D-Printed Engineered Cementitious Composites Incorporating Hybrid PE/PVA Fibers and Yellow River Sand - Assi Lateef, Alsalman Ali, Kareem Rahman, Carter Kealy (2025-11)
Advantages and Challenges of 3D Geopolymer-Based Concrete in Construction - Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements - Ramirez Rodriguez Fatima, Ahmad Rafiq (2025-09)
Sustainable Technology Advances for Additive Construction:
A State-of-the-Art Review - İlerisoy Zeynep, Takva Çağatay, Top Semahat, Gökgöz Berru et al. (2025-08)
The Effectiveness of 3D Concrete Printing Technology in Architectural Design:
Different Corner-Wall Combinations in 3D Printed Elements and Geometric Form Configurations in Residential Buildings - Eid Zainab, Almurbati Nehal (2025-07)
Applications of 3D Printing Buildings Using Construction and Demolition Waste:
Techniques and Considerations - Yousaf Arslan, Khan Shoukat, Koç Muammer (2025-07)
Material, Process, and Design Optimization of Local Earthen Soil Reinforced with Natural Fiber Waste and Nanoclay for 3DP of Functional Structures - Raza Muhammad, Kravchenko Ekaterina, Besklubova Svetlana, Lazorenko Georgy et al. (2025-07)
3D Printing of Recycled Materials for Sustainable Construction:
A Comprehensive Economic and Life Cycle Assessment - Mahmoodi Obaid, Siad Hocine, Lachemi Mohamed, Şahmaran Mustafa (2025-07)
Recent Advances in CDW-Based Geopolymers:
A Review of Mechanical Performance, Structural Application, 3D Printing, Durability and Sustainability - Ma Jiayue, Samarasinghe Don, Rotimi James, Zou Kelvin (2025-06)
A Review of Supply Chain Dynamics of 3D Concrete Printing Construction Practice - İlcan Hüseyin, Külak Adnan, Şahin Oğuzhan, Aldemir Alper et al. (2025-04)
Reinforcement and Modular System for 3DCP Geopolymer Structures Using Construction and Demolition Waste - Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies - Takva Çağatay, Top Semahat, Gökgöz Berru, Gebel Şeyma et al. (2024-11)
Applicability of 3D Concrete Printing Technology in Building Construction with Different Architectural Design Decisions in Housing - Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
Additive Manufacturing Evolution in Construction:
From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications - Rubeis Tullio, Ciccozzi Annamaria, Giusti Letizia, Ambrosini Dario (2024-07)
On the Use of 3D Printing to Enhance the Thermal Performance of Building Envelope:
A Review - Capêto Ana, Jesus Manuel, Uribe Braian, Guimarães Ana et al. (2024-05)
Building a Greener Future:
Advancing Concrete Production Sustainability and the Thermal Properties of 3D Printed Mortars - İlcan Hüseyin, Özkılıç Hamza, Tuğluca Merve, Şahmaran Mustafa (2024-02)
Inter-Layer Mechanical Performance of 3D Printed Cementitious Systems:
A Comprehensive Study on Operational and Material Parameters - Khan Shoukat, İlcan Hüseyin, Imram Ramsha, Aminipour Ehsan et al. (2024-01)
The Impact of Nozzle-Diameter and Printing Speed on Geopolymer-Based 3D Printed Concrete Structures:
Numerical Modeling and Experimental Validation - Özkılıç Hamza, İlcan Hüseyin, Aminipour Ehsan, Tuğluca Merve et al. (2023-08)
Bond Properties and Anisotropy Performance of 3D Printed Construction and Demolition Waste-Based Geopolymers:
Effect of Operational- and Material-Oriented Parameters - Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications
BibTeX
@article{khan_jass_ilca_sahi.2023.3PoCM,
author = "Shoukat Alim Khan and Muhammad Jassim and Hüseyin İlcan and Oğuzhan Şahin and Ismail Raci Bayer and Mustafa Şahmaran and Muammer Koç",
title = "3D Printing of Circular Materials: Comparative Environmental Analysis of Materials and Construction Techniques",
doi = "10.1016/j.cscm.2023.e02059",
year = "2023",
journal = "Case Studies in Construction Materials",
}
Formatted Citation
S. A. Khan, “3D Printing of Circular Materials: Comparative Environmental Analysis of Materials and Construction Techniques”, Case Studies in Construction Materials, 2023, doi: 10.1016/j.cscm.2023.e02059.
Khan, Shoukat Alim, Muhammad Jassim, Hüseyin İlcan, Oğuzhan Şahin, Ismail Raci Bayer, Mustafa Şahmaran, and Muammer Koç. “3D Printing of Circular Materials: Comparative Environmental Analysis of Materials and Construction Techniques”. Case Studies in Construction Materials, 2023. https://doi.org/10.1016/j.cscm.2023.e02059.