A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements (2024-07)¶
, , , Rupnow Tyson
Journal Article - Buildings, Vol. 14, Iss. 7, No. 2170
Abstract
Large-scale construction 3D printing is a promising platform technology that can be leveraged to fabricate structural elements such as columns, piers, pipes, and culverts. In this study, the axial compression and split tensile performance of 3D-printed steel-fiber-reinforced circular elements fabricated with different configurations (hollow, hybrid, mold-cast, and fully 3D-printed) is evaluated. This study further investigates the performance of multi-material circular hybrid elements (3D-printed shells with different backfilled core materials) in an attempt to assess their suitability as a new construction paradigm. The experimental results revealed that the fully 3D-printed steel-fiberreinforced circular elements exhibited a higher load capacity (up to 36%) and a distinct crack pattern compared to the other configurations. The void ratio of circular elements has varying effects on its axial load capacity depending on the printing material and significantly influences its splitting tensile load capacity. Furthermore, the compatibility between the 3D-printed shell and the cast-in-place core is identified as an influential factor in the structural performance of the hybrid elements. The results suggest a promising construction approach where low-cement material can be utilized as infill material for a cost-effective 3D-printed permanent formwork, offering a viable solution for specific infrastructure development applications.
¶
29 References
- Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Arce Gabriel et al. (2024-04)
Automated Reinforcement During Large-Scale Additive Manufacturing:
Structural-Assessment of a Dual Approach - Ahmed Hassan, Giwa Ilerioluwa, Game Daniel, Hebert Marc et al. (2022-09)
Studying Steel-Fiber-Reinforcement for 3D Printed Elements and Structures - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-09)
3D Printing Effect on the Compressive Strength of Concrete Structures - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu, Thiruvenkatamani G. (2022-06)
Mechanical Properties and Failure-Pattern of 3D Printed Hollow Cylinders and Wall Segments under Uniaxial Loading - Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars - Burger Joris, Lloret-Fritschi Ena, Scotto Fabio, Demoulin Thibault et al. (2020-04)
Eggshell:
Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yidong, Zhang Yunsheng, Pang Bo, Wang Dafu et al. (2022-04)
Steel-Fiber Orientational Distribution and Effects on 3D Printed Concrete with Coarse Aggregate - Giwa Ilerioluwa, Dempsey Mary, Fiske Michael, Kazemian Ali (2024-06)
3D Printed Sulfur-Regolith Concrete Performance Evaluation for Waterless Extraterrestrial Robotic Construction - Giwa Ilerioluwa, Game Daniel, Ahmed Hassan, Noorvand Hassan et al. (2023-02)
Performance and Macrostructural Characterization of 3D Printed Steel-Fiber-Reinforced Cementitious Materials - Giwa Ilerioluwa, Herbert Marc, Lamendola Joseph, Fiske Michael et al. (2024-03)
Planetary Robotic Construction Using Large-Scale 3D Printing with Sulfur-Concrete - Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete - Jipa Mihail-Andrei, Dillenburger Benjamin (2022-04)
3D Printed Formwork for Concrete:
State of the Art, Opportunities, Challenges, and Applications - Kazemian Ali, Giwa Ilerioluwa, Ekenel Mahmut (2023-06)
Large-Scale Additive Manufacturing for Automated Construction:
An Overview - Kazemian Ali, Seylabi Elnaz, Ekenel Mahmut (2023-03)
Concrete 3D Printing:
Challenges and Opportunities for the Construction Industry - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
3D Printing of Concrete:
Beyond Horizons - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
3D Printing of Cement-Based Materials with Adapted Buildability - Mozaffari Salma, Bruce Mackenzie, Clune Gabrielle, Xie Ruxin et al. (2023-06)
Digital Design and Fabrication of Clay Formwork for Concrete Casting - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Yan Zitong, Zeng Jun-Jie, Zhuge Yan, Liao Jinjing et al. (2023-12)
Compressive Behavior of FRP-Confined 3D Printed Ultra-High-Performance Concrete Cylinders - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
3D Concrete Printing of Permanent Formwork for Concrete Column Construction
2 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Hasani Alireza, Besharatian Boshra, Dorafshan Sattar (2025-04)
Additively Constructed Plain Concrete Pipes:
Structural Performance and Site Implementation
BibTeX
@article{giwa_kaze_gopu_rupn.2024.ACLBAo3PCE,
author = "Ilerioluwa Giwa and Ali Kazemian and Vijaya Gopu and Tyson Rupnow",
title = "A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements",
doi = "10.3390/buildings14072170",
year = "2024",
journal = "Buildings",
volume = "14",
number = "7",
pages = "2170",
}
Formatted Citation
I. Giwa, A. Kazemian, V. Gopu and T. Rupnow, “A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements”, Buildings, vol. 14, no. 7, p. 2170, 2024, doi: 10.3390/buildings14072170.
Giwa, Ilerioluwa, Ali Kazemian, Vijaya Gopu, and Tyson Rupnow. “A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements”. Buildings 14, no. 7 (2024): 2170. https://doi.org/10.3390/buildings14072170.