In-Situ Coating Technique for Rebar Installation for 3D Printed Reinforced Concrete (2023-07)¶
10.1016/j.conbuildmat.2023.132310
, Yu Shiheng, ,
Journal Article - Construction and Building Materials, Vol. 397
Abstract
Directly-installed rebars have weak adhesion with the surrounding concrete during the 3D printing process, which compromises the mechanical properties and durability of the final outputs. This study presents an in-situ coating technique to coat the rebars inserted in a composite with high-fluidity reinforcing materials (epoxy resin), which contributes to macro, meso, and micro enhancements and increases the buildability of the printable mortar with the release of heat. Microscopic characterizations elucidated the mechanisms of loose bonding and in-situ coating enhancement. Pull-out tests revealed that the grouted epoxy enhanced the bonding strength by up to 418.2%. The in-situ formed mechanical anchorages contributed to a further improvement of 337.0%, achieving an overall improvement of 755.2%. With the original weak layer adhesion limit, this in-situ coating technique increased the flexural strengths of the cast and printed rebar-reinforced beams by 39.7% and 13.0%, respectively. The hybrid manufacturing system of printing and in-situ coating is technically feasible for effectively promoting the mechanical properties and durability of 3D-printed concrete structures.
¶
34 References
- Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments - Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
Mechanical Assessment of Concrete:
Steel Bonding in 3D Printed Elements - Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements - Bester Frederick, Heever Marchant, Kruger Jacques, Cho Seung et al. (2020-07)
Steel-Fiber Links in 3D Printed Concrete - Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
Reinforcing Digitally Fabricated Concrete:
A Systems Approach Review - Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials - Diggs-McGee Brandy, Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Print Time vs. Elapsed Time:
A Temporal Analysis of a Continuous Printing Operation for Additive Constructed Concrete - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Freund Niklas, Mai (née Dressler) Inka, Lowke Dirk (2020-07)
Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Zaker Zafar et al. (2020-06)
Orbital Overlapping Through Induction Bonding Overcomes the Intrinsic Delamination of 3D Printed Cementitious Binders - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Development of the Construction Processes for Reinforced Additively Constructed Concrete - Lao Wenxin, Li Mingyang, Tjahjowidodo Tegoeh (2020-09)
Variable-Geometry Nozzle for Surface Quality Enhancement in 3D Concrete Printing - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Marchment Taylor, Sanjayan Jay (2020-09)
Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Matthäus Carla, Kofler Nadine, Kränkel Thomas, Weger Daniel et al. (2020-10)
Inter-Layer Reinforcement Combined with Fiber-Reinforcement for Extruded Lightweight Mortar Elements - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
Technologies for Improving Buildability in 3D Concrete Printing - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
Role of Chemical Admixtures on 3D Printed Portland Cement:
Assessing Rheology and Buildability - Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
Mechanical Properties and Durability - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness - Zhang Hanghua, Xiao Jianzhuang (2021-08)
Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
5 Citations
- Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
Technique Development and Bond Behavior Characterization - Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
A Systematic Review - Yang Rijiao, Xu Chengji, You Xiufei, Li Xinze et al. (2025-09)
Saddle Stitching-Enabled Interfacial Toughening in 3D Printed Concrete - Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC) - Cao Xiangpeng, Wu Shuoli, Cui Hongzhi (2024-12)
Experimental Study on In-Situ Mesh Fabrication for Reinforcing 3D Printed Concrete
BibTeX
@article{cao_yu_cui_li.2023.ISCTfRIf3PRC,
author = "Xiangpeng Cao and Shiheng Yu and Hongzhi Cui and Zongjin Li",
title = "In-Situ Coating Technique for Rebar Installation for 3D Printed Reinforced Concrete",
doi = "10.1016/j.conbuildmat.2023.132310",
year = "2023",
journal = "Construction and Building Materials",
volume = "397",
}
Formatted Citation
X. Cao, S. Yu, H. Cui and Z. Li, “In-Situ Coating Technique for Rebar Installation for 3D Printed Reinforced Concrete”, Construction and Building Materials, vol. 397, 2023, doi: 10.1016/j.conbuildmat.2023.132310.
Cao, Xiangpeng, Shiheng Yu, Hongzhi Cui, and Zongjin Li. “In-Situ Coating Technique for Rebar Installation for 3D Printed Reinforced Concrete”. Construction and Building Materials 397 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132310.