Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars (2019-07)¶
el Sakka Fatima, , , Nakhoul Charbel
Journal Article - Materials and Structures, Vol. 52, Iss. 4
Abstract
3D concrete printing is an emerging construction technique for building structures layer-by-layer based on digital computer models without the need of formwork. The monitoring of interlayer bonding is crucial to ensure durability and structural integrity. This investigation aims at proposing a new methodology to assess the concurrent effects of material structural build-up (thixotropy), time gap between successive filaments, and incorporation of styrene-butadiene rubber (SBR) polymers on bond strengths of deposited layers. Four mortar series prepared with 450–750 kg/m3 binder and effective water-to-binder ratio of 0.35–0.55 are tested; the resulting thixotropy rate ranged from 0.16 to 1.1 Pa/s. Results showed that mixtures exhibiting moderate thixotropy levels (i.e., about 0.48–0.64 Pa/s) yielded the best performance regarding interfacial bonding. The incorporation of SBR proved efficient to enhance the bond strength as well as attenuate its rate of drop over the time gap between successive layers. This was related to the polymer films that coalesce in the cementitious system, thus binding the cement hydrates together and causing increased tensile strength properties. The bond strengths recorded on specimens exposed to hot temperature of 45 °C were consistently lower than those determined in standard curing conditions. The methodology proposed was successfully validated using 3D laboratory printing machine.
¶
15 References
- Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Nerella Venkatesh, Beigh Mirza, Fataei Shirin, Mechtcherine Viktor (2018-11)
Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
25 Citations
- Si Wen, Khan Mehran, McNally Ciaran (2025-06)
A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing - Munemo Rue, Kruger Jacques, Zijl Gideon (2025-05)
Surface Treatment of 3DPC Interlayers with Silicate-Based Solution for Enhanced Interfacial Bonding - Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures - Jiang Youbau, Liu Yan, Zhang Zupan, Gao Pengxiang et al. (2025-03)
Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle - Aziz Saqib, Alexander Bradley, Gengnagel Christoph, Loutfi Jamila (2024-12)
Minimal Mineral ‑ Rethinking Ceiling Systems:
Shaping the Future of Sustainable Construction - Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
Materials, Engineered Properties and Techniques for Additive Manufacturing - Ding Yao, Ou Xingjian, Qi Hongtuo, Xiong Gang et al. (2024-10)
Inter-Layer Bonding Performance of 3D Printed Engineered Cementitious Composites:
Rheological Regulation and Fiber Hybridization - Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2024-04)
Mitigation of Lack-of-Fusion in 3D Printed Limestone-Calcined-Clay-Cement Concrete Induced by Effective Micro-Organisms - Khan Shoukat, İlcan Hüseyin, Imram Ramsha, Aminipour Ehsan et al. (2024-01)
The Impact of Nozzle-Diameter and Printing Speed on Geopolymer-Based 3D Printed Concrete Structures:
Numerical Modeling and Experimental Validation - Munemo Rue, Kruger Jacques, Zijl Gideon (2023-06)
Improving Inter-Layer Bond in 3D Printed Concrete Through Induced Thermo-Hydrokinetics - Şahin Hatice, Mardani Ali (2023-02)
Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
A State‐of‐the‐art Review - Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy - Zhao Yanhua, Meng Wei, Wang Peifu, Qian Dongqing et al. (2022-09)
Research-Progress of Concrete 3D Printing Technology and Its Equipment System, Material, and Molding-Defect-Control - Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
A Review - Yuan Qiang, Gao Chao, Huang Tingjie, Zuo Shenghao et al. (2022-03)
Factors Influencing the Properties of Extrusion-Based 3D Printed Alkali-Activated Fly-Ash-Slag Mortar - He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste - Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
Overview of the Development of 3D Printing Concrete:
A Review - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Ting Guan, Tay Yi, Tan Ming (2021-04)
Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing - Zahabizadeh Behzad, Pereira João, Gonçalves Claúdia, Pereira Eduardo et al. (2021-03)
Influence of the Printing-Direction and Age on the Mechanical Properties of 3D Printed Concrete - Lim Jian, Zhang Xu, Ting Guan, Pham Quang-Cuong (2021-02)
Stress-Cognizant 3D Printing of Free-Form Concrete Structures - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Assaad Joseph, Yassin Abdallah, Sakka Fatima, Hamzeh Farook (2020-05)
A Modular Approach for Steel Reinforcing of 3D Printed Concrete:
Preliminary Study - Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
BibTeX
@article{sakk_assa_hamz_nakh.2019.TaIBSoPMPM,
author = "Fatima El Sakka and Joseph J. Assaad and Farook R. Hamzeh and Charbel Nakhoul",
title = "Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars",
doi = "10.1617/s11527-019-1356-7",
year = "2019",
journal = "Materials and Structures",
volume = "52",
number = "4",
}
Formatted Citation
F. E. Sakka, J. J. Assaad, F. R. Hamzeh and C. Nakhoul, “Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars”, Materials and Structures, vol. 52, no. 4, 2019, doi: 10.1617/s11527-019-1356-7.
Sakka, Fatima El, Joseph J. Assaad, Farook R. Hamzeh, and Charbel Nakhoul. “Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars”. Materials and Structures 52, no. 4 (2019). https://doi.org/10.1617/s11527-019-1356-7.