Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite (2021-11)¶
Pham Luong, ,
Journal Article - Advances in Cement Research, Vol. 34, Iss. 2, pp. 80-92
Abstract
The aim of this research was to develop a three-dimensional (3D) printable high-performance cementitious composite (CC) reinforced with polyvinyl alcohol (PVA) and polypropylene (PP) fibres. The characteristics of the fresh mortar were identified by conducting tests for rheological behaviour, flow factor and green strength. The mechanical properties of 3D printed specimens under different curing conditions were investigated in different printing directions and compared with those of cast specimens. The addition of a relatively small volume fraction of fibre (0.2%) led to a noticeable increase in yield stress, flow loss and green strength. For the hardened CC, the influence of a small amount of PVA or PP fibre was not significant in terms of the compressive and flexural strengths of the printed samples. The mechanical properties of cast and printed specimens in the hardened state was explained through the pore content, measured using X-ray micro-computed tomography.
¶
24 References
- Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa) - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
Development of a Viable Concrete Printing Process - Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement - Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Zareiyan Babak, Khoshnevis Behrokh (2018-04)
_Effects of Mixture Ingredients on Inter-Layer Adhesion of Concrete in Contour Crafting - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink
10 Citations
- Zhi Zhenzhen, Guo Yanfei, Qi Huahui, Tan Hongbo et al. (2024-11)
Effect of Alkali-Metal-Sulfates on Hydration Properties of Alpha-Calcium-Sulfate-Hemihydrate for 3D Printing - Dias José, Brandão Filipe, Figueiredo Bruno, Cruz Paulo (2024-09)
The Potential of Natural Fiber-Reinforcement in 3D Printed Concrete:
A Review - Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete - Zhang Hongmei, Hu Fan, Duan Yuanfeng, Liao Jian et al. (2024-02)
Mechanical Properties and Micro-Structure of Highly Flowable Geopolymer Composites with Low-Content Polyvinyl-Alcohol-Fiber - Nguyen Vuong, Tran Jonathan, Liu Junli, Tran Mien et al. (2024-02)
Extended Finite Element Multi-Scale Modelling for Crack Propagation in 3D Printed Fiber-Reinforced Concrete - Azimi Zahir, Mousavi Moein, Bengar Habib, Javadi Akbar (2023-12)
Study on the Post-Fire Mechanical Properties of Lightweight 3D Printed Concrete Containing Expanded Perlite as Partial Replacement of Natural Sand - Dey Dhrutiman, Nguyen Vuong, Nguyen-Xuan Hung, Srinivas Dodda et al. (2023-12)
Flexural Performance of 3D Printed Concrete Structure with Lattice-Infills - Liu Junli, Tran Jonathan, Nguyen Vuong, Gunasekara Chamila et al. (2023-06)
3D Printing of Cementitious Mortar with Milled Recycled Carbon-Fibers:
Influences of Filament Offset on Mechanical Properties - Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
Rheology and Printability of Portland-Cement-Based Materials:
A Review - Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
3D Concrete Printing Modelling of Thin-Walled Structures
BibTeX
@article{pham_pand_tran.2022.FaHPo3PPFRHPCC,
author = "Luong Pham and Biranchi Narayan Panda and Jonathan Phuong Tran",
title = "Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite",
doi = "10.1680/jadcr.20.00038",
year = "2022",
journal = "Advances in Cement Research",
volume = "34",
number = "2",
pages = "80--92",
}
Formatted Citation
L. Pham, B. N. Panda and J. P. Tran, “Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite”, Advances in Cement Research, vol. 34, no. 2, pp. 80–92, 2022, doi: 10.1680/jadcr.20.00038.
Pham, Luong, Biranchi Narayan Panda, and Jonathan Phuong Tran. “Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite”. Advances in Cement Research 34, no. 2 (2022): 80–92. https://doi.org/10.1680/jadcr.20.00038.