Enhancing Mechanical Properties of 3D Printed Cementitious Composites Utilizing Hybrid Recycled PP and PET-Fibers (2024-11)¶
10.1016/j.conbuildmat.2024.139179
Nasr Ahmed, , , , ,
Journal Article - Construction and Building Materials, Vol. 455, No. 139179
Abstract
The integration of fibers offers a means to fabricate intricate, load-bearing architectural configurations that were previously challenging to achieve with conventional 3D printed concrete. This study investigates the incorporation of recycled plastic fibers (RPFs) derived from polyethylene terephthalate (PET) and polypropylene (PP) to enhance the mechanical properties of 3D printed cementitious composites (3DPCC). Two distinct fiber lengths, 6 mm and 12 mm, were utilized for each fiber type across various fiber volume fractions ranging from 0.3 % to 1.5 % of the mortar volume. The results show that the optimal volume fractions are 1 % for 6 mm fibers and 0.7 % for 12 mm fibers. The findings indicate that hybrid combinations of PP and PET fibers achieve superior mechanical characteristics compared to the use of individual fiber types. The assessment of fresh mortar properties included fluidity, buildability, and extrudability, along with the evaluation of compressive and flexural strength as indicators of mechanical properties. Additionally, this study assessed the influence of a hybrid fiber mix comprising 40 % PP and 60 % PET of the 6 mm fiber length volume fraction, which exhibited the highest average compressive (20.6 %) and flexural strength (44.9 %) in the Z direction for 3DPCC, surpassing the performance of individual PP and PET fibers at the same volume fraction across all the volume ratios. When 12 mm fibers were utilized, the compressive and flexural strengths in the Z direction increased by 20.8 % and 46.7 %, respectively, for a mix of 20 % PP and 80 % PET of the total volume fraction. Concerning buildability, the control sample achieved a maximum of 29 layers, whereas the addition of 1.5 % PET fibers at 12 mm enabled the structure to reach 48 layers.
¶
18 References
- Chu Shaohua, Li Leo, Kwan Albert (2020-09)
Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate - Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
Mega-Scale Fabrication by Contour Crafting - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Pegna Joseph (1997-02)
Exploratory Investigation of Solid Freeform Construction - Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates - Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
A Cleaner Perspective on 3D Printing - Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
3D Recycled Mortar Printing:
System-Development, Process-Design, Material-Properties and On-Site-Printing - Zaid Osama, Ouni Mohamed (2024-04)
Advancements in 3D Printing of Cementitious Materials:
A Review of Mineral Additives, Properties, and Systematic Developments - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
9 Citations
- Hasan Md, Xu Jie, Uddin Md (2025-11)
A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
Fresh Properties, Mechanical Performance, and Current Limitations - Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-11)
Examining the Multi-Scale Toughening Mechanisms and Mechanical Anisotropic Behavior of 3D Printed Concrete Reinforced with Calcium Sulfate Whiskers and Mixed Fibers - Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
A Review - Zhou Juanlan, Shi Xiangwen, Zheng Hongrun, Jin Ruoyu et al. (2025-09)
Investigating the Effects of Hybrid PVA/BF Fibers in Low-Carbon 3D Printed Concrete with Recycled Aggregates:
Rheology, Strength, and Anisotropy - Nasr Ahmed, Wang Jiyuan, Duan Zhenhua, Deng Qi et al. (2025-09)
Assessing the Visibility and Impact of Recycled High-Density Polyethylene Fibers in 3D-Printed Cementitious Composites - Dai Pengfei, Luo Zhenhua, Wang Yalun, Mbabazi Justin et al. (2025-06)
Waste Plastic Fiber Reinforced Cementitious Cavity Structures Manufactured by Mortar Extrusion 3D Printing - Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
Insights into Mix Ratios, Testing Procedures, and Material Behaviour - Nasr Ahmed, Duan Zhenhua, Singh Amardeep, Deng Qi et al. (2025-02)
Fresh Properties and Rheological Behavior of 3D-Printed Cementitious Composites Incorporating Recycled PVC and Nylon Fibers:
An Experimental Approach - Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
Evaluation of 3D Concrete Printing Extrusion-Efficiency
BibTeX
@article{nasr_duan_sing_yang.2024.EMPo3PCCUHRPaPF,
author = "Ahmed Nasr and Zhenhua Duan and Amardeep Singh and Min Yang and Shuai Zou and Mohammed Abd El-Salam Arab",
title = "Enhancing Mechanical Properties of 3D Printed Cementitious Composites Utilizing Hybrid Recycled PP and PET-Fibers",
doi = "10.1016/j.conbuildmat.2024.139179",
year = "2024",
journal = "Construction and Building Materials",
volume = "455",
pages = "139179",
}
Formatted Citation
A. Nasr, Z. Duan, A. Singh, M. Yang, S. Zou and M. A. E.-S. Arab, “Enhancing Mechanical Properties of 3D Printed Cementitious Composites Utilizing Hybrid Recycled PP and PET-Fibers”, Construction and Building Materials, vol. 455, p. 139179, 2024, doi: 10.1016/j.conbuildmat.2024.139179.
Nasr, Ahmed, Zhenhua Duan, Amardeep Singh, Min Yang, Shuai Zou, and Mohammed Abd El-Salam Arab. “Enhancing Mechanical Properties of 3D Printed Cementitious Composites Utilizing Hybrid Recycled PP and PET-Fibers”. Construction and Building Materials 455 (2024): 139179. https://doi.org/10.1016/j.conbuildmat.2024.139179.