Skip to content

Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC) (2020-07)

10.1007/978-3-030-49916-7_89

 McGee Wesley,  Ng Tsz,  Yu Kequan,  Li Victor
Contribution - Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication, pp. 916-925

Abstract

This paper focuses on the development of a nozzle steering and shaping system for concrete 3D printing (3DCP) of Engineered/Strain Hardening Cementitious Composites (ECC/SHCC). The investigation highlights the development of an integrated system that includes robotic end-effector tooling, automated control associated with the delivery and deposition processes, as well as multi-axis nozzle steering for enhanced surface quality of the printed components. The results are discussed along with demonstrated prototypes. While significant improvements to the speed and efficiency of 3DP cementitious materials have been developed in recent years, only a few precedents, discussed in the paper, have aimed to improve geometric surface quality of the final printed components. In addition to improving the surface quality, the designed extrusion shaping process has the potential to improve mechanical performance of ECC by maximizing interfacial surface area and improving fiber alignment. Material effects will also be discussed in relation to the development of the overall system. An overview of the geometric capabilities and limitations of the proposed system will be presented in comparison with existing 3DP techniques.

6 References

  1. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  2. Bard Joshua, Cupkova Dana, Washburn Newell, Zeglin Garth (2018-12)
    Robotic Concrete Surface Finishing:
    A Moldless Approach to Creating Thermally Tuned Surface Geometry for Architectural Building Components Using Profile 3D Printing
  3. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  4. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  5. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  6. Wolfs Robert, Bos Freek, Strien Emiel, Salet Theo (2017-06)
    A Real-Time Height Measurement and Feedback System for 3D Concrete Printing

22 Citations

  1. Baah Thomas, Kim Heejeong, Latypov Marat (2025-11)
    Multi-Objective Adaptive Experimental Approach for Optimizing 3D Concrete Printing Mixtures and Parameters Incorporating Construction and Demolition Waste for Sustainable Construction
  2. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  3. Elhag Ahmed, Mabrouk Abdelkader, Ghazouani Nejib, Nasir Umara (2025-09)
    Advances in Sustainable 3D-Printed Geopolymer Concrete:
    Materials, Performance, and Environmental Impact in Next Generation Green Construction
  4. Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
    Key Variables Influencing the Performance of 3D Printed Concrete:
    A Comprehensive Analysis
  5. Olivo Nik, Piccioni Valeria, Milano Francesco, Gramazio Fabio et al. (2025-02)
    Thermal Enhancement of Hollow-Core 3DP Through Nozzle Design Customization
  6. Jiang Youbau, Gao Pengxiang, Adhikari Sondipon, Yao Xiaofei et al. (2024-12)
    Studies on the Mechanical Properties of Inter-Layer Interlocking 3D Printed Concrete Based on a Novel Nozzle
  7. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  8. Kamhawi Abdallah, Brown Jacob, Fahmy Ali, Meibodi Mania (2024-09)
    Waste-Free Production of Ultra-Thin Concrete Panels via Robotic 3D Printing and CNC Dynamic Bed Device
  9. Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H. et al. (2024-07)
    3D Printing and Implementation of Engineered Cementitious Composites:
    A Review
  10. Silveira Marcos, Wagner Juliana, Khanverdi Mohsen, Das Sreekanta (2024-02)
    Structural Performance of Large-Scale 3D Printed Walls Subjected to Axial Compression Load
  11. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  12. Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
    Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete
  13. Raphael Benny, Senthilnathan Shanmugaraj, Patel Abhishek, Bhat Saqib (2023-01)
    A Review of Concrete 3D Printed Structural Members
  14. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  15. Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping et al. (2022-11)
    Flow and Deformation Behaviors of Cementitious Materials Through Nozzles with Different Geometric Parameters:
    Experimental and Numerical Approaches
  16. Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
    Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
  17. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  18. Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
    Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
    Experimental and Numerical Studies
  19. He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
    Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste
  20. Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
    Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites
  21. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  22. Sepasgozar Samad, Shi Anqi, Yang Liming, Shirowzhan Sara et al. (2020-12)
    Additive Manufacturing Applications for Industry 4.0:
    A Systematic Critical Review

BibTeX
@inproceedings{mcge_ng_yu_li.2020.ENSfI3oECCES,
  author            = "Wesley McGee and Tsz Yan Ng and Kequan Yu and Victor C. Li",
  title             = "Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC)",
  doi               = "10.1007/978-3-030-49916-7_89",
  year              = "2020",
  volume            = "28",
  pages             = "916--925",
  booktitle         = "Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020",
  editor            = "Freek Paul Bos and Sandra Simaria de Oliveira Lucas and Robert Johannes Maria Wolfs and Theo A. M. Salet",
}
Formatted Citation

W. McGee, T. Y. Ng, K. Yu and V. C. Li, “Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC)”, in Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, 2020, vol. 28, pp. 916–925. doi: 10.1007/978-3-030-49916-7_89.

McGee, Wesley, Tsz Yan Ng, Kequan Yu, and Victor C. Li. “Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC)”. In Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, edited by Freek Paul Bos, Sandra Simaria de Oliveira Lucas, Robert Johannes Maria Wolfs, and Theo A. M. Salet, 28:916–25, 2020. https://doi.org/10.1007/978-3-030-49916-7_89.