Skip to content

Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites (2023-03)

10.1016/j.jobe.2023.106355

Kilic Ugur,  Ma Ji,  Baharlou Ehsan,  Ozbulut Osman
Journal Article - Journal of Building Engineering, Vol. 70

Abstract

This study explores the effects of a viscosity modifying admixture (VMA) and attapulgite nanoclay (ANC) on rheological and viscoelastic properties as well as printability characteristics of mortar mixtures used for 3D printing. A total of sixteen mortar mixtures with varying dosages of VMA and ANC are prepared using a factorial design of experiments. Rheological properties of each mixture including static yield stress, plastic viscosity, and dynamic yield stress are evaluated through rotational rheometry tests such as ramp test and stress growth test. Then, the viscoelastic properties such as storage modulus, loss modulus and linear viscoelastic range are determined using oscillatory rheology tests. A thermogravimetric analysis (TGA) is conducted to assess the effects of VMA and ANC on hydration characteristics of mortar mixtures. A statistical analysis is performed to further evaluate the individual and joint effects of VMA and ANC on key performance parameters. An unsupervised clustering algorithm is used to group the mixtures into three clusters based on the obtained rheological and viscoelastic properties. A direct printing test using a screw type 3D concrete printing is conducted to assess the printability and buildability of the mortar mixtures selected from each cluster. Results indicate that the ANC can more effectively alter both rheological and viscoelastic properties of mortar composites for 3D printing compared with VMA. However, the combined use of VMA and ANC in printable mortar mixtures leads to a high static yield stress and storage modulus and the resulted mixture exhibits good buildability without any plastic collapse.

27 References

  1. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  2. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  3. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  4. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  5. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
    Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics
  6. Eugenin Claudia, Navarrete Iván, Brevis Wernher, Lopez Mauricio (2022-02)
    Air-Bubbles as an Admixture for Printable Concrete:
    A Review of the Rheological Effect of Entrained Air
  7. Harbouz Ilhame, Rozière Emmanuel, Yahia Ammar, Loukili Ahmed (2022-02)
    Printability-Assessment of Cement-Based Materials Based on Rheology, Hydration Kinetics, and Viscoelastic Properties
  8. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  9. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  10. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  11. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  12. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  13. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  14. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  15. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  16. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  17. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  18. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  19. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  20. Perkins Isaac, Skitmore Martin (2015-03)
    Three-Dimensional Printing in the Construction Industry:
    A Review
  21. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  22. Sikora Paweł, Chung Sang-Yeop, Liard Maxime, Lootens Didier et al. (2021-02)
    The Effects of Nano-Silica on the Fresh and Hardened Properties of 3D Printable Mortars
  23. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  24. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  25. Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
    The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials
  26. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  27. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities

9 Citations

  1. Jamjala Siva, Thulasirangan Lakshmidevi Manivannan, Reddy K., Kafle Bidur et al. (2025-10)
    A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete:
    Rheology to Microstructure and Eco-Functionality
  2. Si Wen, Hopkins Ben, Khan Mehran, McNally Ciaran (2025-09)
    Towards Sustainable Mortar:
    Optimising Sika-Fiber Dosage in Ground Granulated Blast Furnace Slag and Silica Fume Blends for 3D Concrete Printing
  3. Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
    Advancing 3D Printable Concrete with Nanoclays:
    Rheological and Mechanical Insights for Construction Applications
  4. Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
    Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process
  5. Venugopal Reddy P., Nakkeeran G., Roy Dipankar, Alaneme George (2024-11)
    Evaluating the Use of Recycled Fine Aggregates in 3D Printing:
    A Systematic Review
  6. Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
    Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay
  7. Shoaei Parham, Gallantree-Smith Harrison, Martínez Pacheco Victor, Pamies Ramón et al. (2024-06)
    Comparative Analysis of 3D Printing of Portland Cement Mortars with Hydroxypropyl-Methylcellulose and Micro-Fibrillated Cellulose as Viscosity-Modifying-Agents
  8. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites
  9. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites

BibTeX
@article{kili_ma_baha_ozbu.2023.EoVMAaNCoFaRVPaPCoCC,
  author            = "Ugur Kilic and Ji Ma and Ehsan Baharlou and Osman E. Ozbulut",
  title             = "Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites",
  doi               = "10.1016/j.jobe.2023.106355",
  year              = "2023",
  journal           = "Journal of Building Engineering",
  volume            = "70",
}
Formatted Citation

U. Kilic, J. Ma, E. Baharlou and O. E. Ozbulut, “Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites”, Journal of Building Engineering, vol. 70, 2023, doi: 10.1016/j.jobe.2023.106355.

Kilic, Ugur, Ji Ma, Ehsan Baharlou, and Osman E. Ozbulut. “Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites”. Journal of Building Engineering 70 (2023). https://doi.org/10.1016/j.jobe.2023.106355.