Skip to content

Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing (2020-11)

10.3390/ma13225147

 Vespalec Arnošt,  Novák Josef, Kohoutková Alena, Vosynek Petr,  Podroužek Jan,  Škaroupka David,  Zikmund Tomáš,  Kaiser Jozef,  Paloušek David
Journal Article - Materials, Vol. 13, Iss. 22

Abstract

3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed.

11 References

  1. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  2. Ji Guangchao, Ding Tao, Xiao Jianzhuang, Du Shupeng et al. (2019-05)
    A 3D Printed Ready-Mixed Concrete Power-Distribution Substation:
    Materials and Construction Technology
  3. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  4. Keating Steven, Leland Julian, Cai Levi, Oxman Neri (2017-04)
    Toward Site-Specific and Self-Sufficient Robotic Fabrication on Architectural-Scales
  5. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  7. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  8. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  9. Putten Jolien, Schutter Geert, Tittelboom Kim (2018-09)
    The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials
  10. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  11. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder

16 Citations

  1. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  2. Luo Xiaoyu, Zhao Yuqi, Yao Xiaofei, Zou Cunjun et al. (2025-05)
    3D Printing Concrete Interface Treatment Based on Physical and Chemical Methods:
    A Review
  3. Wang Chaofan, Li Bin, Chen Bing (2025-04)
    Enhancing Printability and Mechanical Performance of 3D Printed Magnesium Phosphate Cement Through Silica Fume Modification:
    Rheological, Microstructural, and Numerical Insights
  4. Yabanigül Meryem, Özer Derya (2024-12)
    Exploring Architectural Units Through Robotic 3D Concrete Printing of Space-Filling Geometries
  5. Glotz Theresa, Rasehorn Inken, Petryna Yuri (2024-12)
    Mechanical Behavior of Hardened Printed Concrete and the Effect of Cold Joints:
    An Experimental Investigation
  6. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  7. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  8. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  9. Skripkiūnas Gintautas, Girskas Giedrius, Rishko Lyudmyla (2023-10)
    Lightweight Portland Cement Mixtures with Perlite for 3D Printing of Concrete Structures
  10. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  11. Vespalec Arnošt, Podroužek Jan, Koutný Daniel (2023-04)
    DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm
  12. Melichar Jindřich, Žižková Nikol, Brožovský Jiří, Mészárosová Lenka et al. (2022-11)
    Study of the Interaction of Cement-Based Materials for 3D Printing with Fly-Ash and Superabsorbent Polymers
  13. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  14. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  15. Heever Marchant, Plessis Anton, Bester Frederick, Kruger Jacques et al. (2022-02)
    A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete
  16. He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
    Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste

BibTeX
@article{vesp_nova_koho_vosy.2020.IBaITSoaHCMwaCAfAM,
  author            = "Arnošt Vespalec and Josef Novák and Alena Kohoutková and Petr Vosynek and Jan Podroužek and David Škaroupka and Tomáš Zikmund and Jozef Kaiser and David Paloušek",
  title             = "Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing",
  doi               = "10.3390/ma13225147",
  year              = "2020",
  journal           = "Materials",
  volume            = "13",
  number            = "22",
}
Formatted Citation

A. Vespalec, “Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing”, Materials, vol. 13, no. 22, 2020, doi: 10.3390/ma13225147.

Vespalec, Arnošt, Josef Novák, Alena Kohoutková, Petr Vosynek, Jan Podroužek, David Škaroupka, Tomáš Zikmund, Jozef Kaiser, and David Paloušek. “Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing”. Materials 13, no. 22 (2020). https://doi.org/10.3390/ma13225147.