Skip to content

Adhesion Performance of Alkali-Activated Material for 3D Printing of Tunnel Linings at Different Temperatures (2024-05)

10.1007/s11709-024-1067-1

 Tao Yaxin,  Dai Xiaodi,  de Schutter Geert,  van Tittelboom Kim
Journal Article - Frontiers of Structural and Civil Engineering

Abstract

Robotic-based technologies such as automated spraying or extrusion-based 3-dimensional (3D) concrete printing can be used to build tunnel linings, aiming at reducing labor and mitigating the associated safety issues, especially in the high-geothermal environment. Extrusion-based 3D concrete printing (3DCP) has additional advantages over automated sprayings, such as improved surface quality and no rebound. However, the effect of different temperatures on the adhesion performance of 3D-printed materials for tunnel linings has not been investigated. This study developed several alkali-activated slag mixtures with different activator modulus ratios to avoid the excessive use of Portland cement and enhance sustainability of 3D printable materials. The thermal responses of the mixtures at different temperatures of 20 and 40 °C were studied. The adhesion strength of the alkali-activated material was evaluated for both early and later ages. Furthermore, the structural evolution of the material exposed to different temperatures was measured. This was followed by microstructure characterization. Results indicate that elevated temperatures accelerate material reactions, resulting in improved early-age adhesion performance. Moreover, higher temperatures contribute to the development of a denser microstructure and enhanced mechanical strength in the hardened stage, particularly in mixtures with higher silicate content.

20 References

  1. Dai Xiaodi, Tao Yaxin, Tittelboom Kim, Schutter Geert (2023-02)
    Rheological and Mechanical Properties of 3D Printable Alkali-Activated Slag Mixtures with Addition of Nano Clay
  2. Ennab Lena, Dixit Manish, Birgisson Bjorn, Kumar Pranav (2022-04)
    Comparative Life Cycle Assessment of Large-Scale 3D Printing Utilizing Kaolinite-Based Calcium-Sulfoaluminate-Cement Concrete and Conventional Construction
  3. Heidarnezhad Fatemeh, Zhang Qian (2022-01)
    Shotcrete-Based 3D Concrete Printing:
    State of Art, Challenges, and Opportunities
  4. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  5. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  6. Lowke Dirk, Talke Daniel, Mai (née Dressler) Inka, Weger Daniel et al. (2020-05)
    Particle-Bed 3D Printing by Selective Cement-Activation:
    Applications, Material and Process Technology
  7. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  8. Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
    A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete
  9. Mohan Manu, Rahul Attupurathu, Dam Benjamin, Zeidan Talina et al. (2022-02)
    Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures
  10. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  11. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-07)
    Buildability of Geopolymer Concrete for 3D Printing with Microwave-Heating
  12. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
    Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing
  13. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  14. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  15. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  16. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2021-11)
    Influence of Substrate-Surface-Roughness and Moisture-Content on Tensile Adhesion Performance of 3D Printable Concrete
  17. Tao Yaxin, Ren Qiang, Lesage Karel, Tittelboom Kim et al. (2022-07)
    Shape Stability of 3D Printable Concrete with River and Manufactured Sand Characterized by Squeeze Flow
  18. Tao Yaxin, Ren Qiang, Vantyghem Gieljan, Lesage Karel et al. (2023-02)
    Extending 3D Concrete Printing to Hard Rock Tunnel Linings:
    Adhesion of Fresh Cementitious Materials for Different Surface Inclinations
  19. Voney Vera, Odaglia Pietro, Brumaud Coralie, Dillenburger Benjamin et al. (2021-02)
    From Casting to 3D Printing Geopolymers:
    A Proof of Concept
  20. Zhong Hui, Zhang Mingzhong (2022-02)
    3D Printing Geopolymers:
    A Review

1 Citations

  1. Tao Yaxin, Wang Li, Wangler Timothy, Lesage Karel et al. (2025-05)
    A (P)Review:
    Adhesion of Printcrete for Tunnel Structures

BibTeX
@article{tao_dai_schu_titt.2024.APoAAMf3PoTLaDT,
  author            = "Yaxin Tao and Xiaodi Dai and Geert de Schutter and Kim van Tittelboom",
  title             = "Adhesion Performance of Alkali-Activated Material for 3D Printing of Tunnel Linings at Different Temperatures",
  doi               = "10.1007/s11709-024-1067-1",
  year              = "2024",
  journal           = "Frontiers of Structural and Civil Engineering",
}
Formatted Citation

Y. Tao, X. Dai, G. de Schutter and K. van Tittelboom, “Adhesion Performance of Alkali-Activated Material for 3D Printing of Tunnel Linings at Different Temperatures”, Frontiers of Structural and Civil Engineering, 2024, doi: 10.1007/s11709-024-1067-1.

Tao, Yaxin, Xiaodi Dai, Geert de Schutter, and Kim van Tittelboom. “Adhesion Performance of Alkali-Activated Material for 3D Printing of Tunnel Linings at Different Temperatures”. Frontiers of Structural and Civil Engineering, 2024. https://doi.org/10.1007/s11709-024-1067-1.