Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry (2021-11)¶
,
Journal Article - ACI Materials Journal, Vol. 118, Iss. 6, pp. 123-137
Abstract
Three-dimensional (3D) printing of cement-based materials is carried out using extrusion, which requires a fundamental understanding of the non-Newtonian flow of pastes through capillaries, which is the focus of this paper. 3D-printable cementitious pastes, qualified using steady-state extrusion pressure, are subjected to multiple-speed extrusion tests under apparent shear rates that correspond to typical printing speeds. The true, non-Newtonian flow curves are obtained by carrying out the relevant end corrections, deconvoluting the apparent shear rate (or velocity) into its true and wall slip components and applying the Weissenberg-Rabinowitsch correction. An exponential relationship is observed between the slip velocity and the wall shear stress, which is used to determine the slip layer thickness. The velocity profiles in the capillary demonstrated the shear-thinning nature of the pastes and the existence of a plug-flow zone with invariant velocity, while the viscosity profiles showed the near-Newtonian response of the superplasticized paste at higher shear rates. The influence of printing speed, particle concentration, and the presence of superplasticizer on the slip layer thickness is explored. A particle-depleted slip layer could be beneficial in reducing the energy needed for printing but could have implications in interlayer bonding and durability. The flow characterization approach presented herein can be adopted to optimize the paste material design and printing characteristics for extrusion-based 3D printing.
¶
15 References
- Alghamdi Hussam, Neithalath Narayanan (2019-07)
Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
3D Printing of Buildings and Building Components as the Future of Sustainable Construction? - Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
Mega-Scale Fabrication by Contour Crafting - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Silva Wilson, Fryda Hervé, Bousseau Jean-Noël, Andreani Pierre-Antoine et al. (2019-07)
Evaluation of Early-Age Concrete Structural Build-Up for 3D Concrete Printing by Oscillatory Rheometry - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review
2 Citations
- Xie Xiangyu, Liu Xuemei, Zhang Nan, Zhang Lihai et al. (2025-09)
Capillary Extrusion Rheometry for Characterising Wall Slip Behaviour in 3D Printed Concrete - Nair Sooraj, Sant Gaurav, Neithalath Narayanan (2021-11)
Mathematical Morphology-Based Point-Cloud-Analysis-Techniques for Geometry-Assessment of 3D Printed Concrete Elements
BibTeX
@article{nair_neit.2021.FCoTDPCPDEUCR,
author = "Sooraj Kumar A. O. Nair and Narayanan Neithalath",
title = "Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry",
doi = "10.14359/51733110",
year = "2021",
journal = "ACI Materials Journal",
volume = "118",
number = "6",
pages = "123--137",
}
Formatted Citation
S. K. A. O. Nair and N. Neithalath, “Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry”, ACI Materials Journal, vol. 118, no. 6, pp. 123–137, 2021, doi: 10.14359/51733110.
Nair, Sooraj Kumar A. O., and Narayanan Neithalath. “Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry”. ACI Materials Journal 118, no. 6 (2021): 123–37. https://doi.org/10.14359/51733110.