Mechanical Properties and Fracture Phenomena in 3D Printed Helical Cementitious Architected Materials Under Compression (2024-07)¶
, , , ,
Journal Article - Materials and Structures, Vol. 57, Iss. 7
Abstract
The mechanical response and fracture behavior of two architected 3D-printed hardened cement paste (hcp) elements, ‘lamellar’ and ‘Bouligand’, were investigated under uniaxial compression. A lab-based X-ray microscope was used to characterize the post-fracture crack pattern. The mechanical properties and crack patterns were analyzed and compared to cast hcp. The role of materials architecture and 3D-printing-induced weak interfaces on the mechanical properties and fracture behavior are discussed. The pore architecture that inadvertently forms in the design of solid architected materials dictated the overall mechanical response and fracture behaviors in both 3D-printed architected materials. While no specific crack pattern or microcracking was observed in the cast element, lamellar architecture demonstrated a crack pattern following weak vertical interfaces. Bouligand architectures, on the other hand, exhibited a helical crack pattern with distributed interfacial microcracking aligned with the helical orientation of filaments. As a result, the bouligand architected elements showed a significant 40% increase in work-of-failure compared to cast counterparts. The enhanced energy absorption was obtained without sacrificing the strength and was attributed to higher fractured surface and microcracking, both of which follow the weak helical interfaces.
¶
33 References
- Biernacki Joseph, Bullard Jeffrey, Sant Gaurav, Banthia Nemkumar et al. (2017-04)
Cements in the 21st Century:
Challenges, Perspectives, and Opportunities - Dörfler Kathrin, Dielemans Gido, Lachmayer Lukas, Recker Tobias et al. (2022-06)
Additive Manufacturing Using Mobile Robots:
Opportunities and Challenges for Building Construction - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Ghantous Rita, Evseeva Anastasiia, Dickey Brandon, Gupta Shashank et al. (2023-07)
Examining Effect of Printing-Directionality on Freezing-and-Thawing Response of Three-Dimensional-Printed Cement-Paste - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Khoshnevis Behrokh, Bekey George (2002-09)
Automated Construction Using Contour Crafting:
Applications on Earth and Beyond - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
Particle-Bed 3D Printing in Concrete Construction:
Possibilities and Challenges - Lowke Dirk, Vandenberg Aileen, Pierre Alexandre, Thomas Amaury et al. (2021-07)
Injection 3D Concrete Printing in a Carrier Liquid:
Underlying Physics and Applications to Lightweight Space Frame Structures - Moini Mohamadreza (2024-01)
Perspectives in Architected Infrastructure Materials - Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis - Moini Mohamadreza, Olek Jan, Magee Bryan, Zavattieri Pablo et al. (2018-09)
Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-Ray Micro-Computed Tomography - Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
Additive Manufacturing and Performance of Architectured Cement-Based Materials - Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2021-12)
Open-Span Printing Method for Assessment of Early-Age Deformations of Additively Manufactured Cement-Based Materials Using an Isosceles Triangle - Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2022-04)
Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement-Paste Hollow Cylinders - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Amziane Sofiane (2019-04)
3D Printing in Concrete:
General Considerations and Technologies - Prihar Arjun, Garlock Maria, Najmeddine Aimane, Moini Mohamadreza (2024-01)
Mechanical Performance of Sinusoidally Architected Concrete Enabled by Robotic Additive Manufacturing - Ralston Nadia, Gupta Shashank, Moini Mohamadreza (2024-05)
3D Printing of Architected Calcium-Silicate Binders with Enhanced and In-Situ Carbonation - Rodriguez Fabian, Olek Jan, Moini Mohamadreza, Zavattieri Pablo et al. (2021-11)
Linking Solids Content and Flow Properties of Mortars to Their Three-Dimensional Printing Characteristics - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xu Yading, Zhang Hongzhi, Schlangen Erik, Luković Mladena et al. (2020-04)
Cementitious Cellular Composites with Auxetic Behavior - Zareiyan Babak, Khoshnevis Behrokh (2017-08)
Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete
2 Citations
- Paul Suvash, Lee Junghyun, Tay Yi, Lim Sean et al. (2025-10)
Unlocking the Sustainable Potential of 3D Concrete Printing with Large Aggregates and Steam–CO2 Curing - Lori Ali, Mehrali Mehdi (2024-11)
Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures
BibTeX
@article{moin_rodr_olek_youn.2024.MPaFPi3PHCAMUC,
author = "Mohamadreza Moini and Fabian B. Rodriguez and Jan Olek and Jeffrey P. Youngblood and Pablo D. Zavattieri",
title = "Mechanical Properties and Fracture Phenomena in 3D Printed Helical Cementitious Architected Materials Under Compression",
doi = "10.1617/s11527-024-02437-4",
year = "2024",
journal = "Materials and Structures",
volume = "57",
number = "7",
}
Formatted Citation
M. Moini, F. B. Rodriguez, J. Olek, J. P. Youngblood and P. D. Zavattieri, “Mechanical Properties and Fracture Phenomena in 3D Printed Helical Cementitious Architected Materials Under Compression”, Materials and Structures, vol. 57, no. 7, 2024, doi: 10.1617/s11527-024-02437-4.
Moini, Mohamadreza, Fabian B. Rodriguez, Jan Olek, Jeffrey P. Youngblood, and Pablo D. Zavattieri. “Mechanical Properties and Fracture Phenomena in 3D Printed Helical Cementitious Architected Materials Under Compression”. Materials and Structures 57, no. 7 (2024). https://doi.org/10.1617/s11527-024-02437-4.