Skip to content

Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents (2020-12)

10.3390/polym12122900

Mohammed Alyaa, al Saadi Nihad
Journal Article - Polymers, Vol. 12, Iss. 12

Abstract

One of the considerable challenges in the design of cementitious mixtures for additive manufacturing/three-dimensional (3D) printing applications is achieving both suitable fresh properties and significant mechanical strengths. This paper presents the use of graphene oxide (GO) as a promising nano reinforcement material with the potential to improve the printing feasibility and quality of a 3D printed cementitious matrix. Additionally, in this study, a viscosity modifying agent (VMA) was employed as a chemical additive to attain the required consistency and flow. The printed mixture was fabricated using various cementitious materials and waste materials. This study investigated the impact of GO and VMA on the enhancement of the 3D printing of cementitious composites through several tests. A flow test was conducted using the flow table test. The results showed a high fluidity and practical consistency, which are essential for nozzle pumping and accurateness in printed shapes. Furthermore, the bleeding test showed minimal bleeding up to hardening, and a considerable self-cleaning ability was noted during handling when conducting examinations of fresh properties. For hardened properties, the mechanical strengths were exceptionally high, especially at early ages, which is crucial for the stability of sequence layers of printed composites. The tensile strengths were 3.77, 10.5, 13.35, and 18.83 MPa at 1, 3, 7, and 28 days, respectively, and the compressive strengths were 25.1, 68.4, 85.6, and 125.4 MPa at 1, 3, 7, and 28 days, respectively. The test results showed the effectiveness of the fabricated cementitious mixture design method for meeting the requirements for 3D concrete printing applications.

7 References

  1. Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
    Rheological Property Criteria for Buildable 3D Printing Concrete
  2. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  3. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  4. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  5. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  6. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  7. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects

9 Citations

  1. Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
    Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders
  2. Sousa Israel, Alessandro Antonella, Mesquita Esequiel, Laflamme Simon et al. (2024-11)
    Comprehensive Review of 3D Printed Cementitious Composites with Carbon Inclusions:
    Current Status and Perspective for Self-Sensing Capabilities
  3. Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
    Micro/Nano Additives in 3D Printing Concrete:
    Opportunities, Challenges, and Potential Outlook in Construction Applications
  4. Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
    Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
    A Review
  5. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  6. Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
    Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
    A Review
  7. Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-07)
    Automating Mix-Design for 3D Concrete Printing Using Optimization Methods
  8. Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-04)
    D-Optimal Design of Experiments Applied to 3D High-Performance Concrete Printing Mix-Design
  9. Douba AlaEddin, Badjatya Palash, Kawashima Shiho (2022-03)
    Enhancing Carbonation and Strength of MgO Cement Through 3D Printing

BibTeX
@article{moha_saad.2020.UHESCGSfAMAFbUGOaVMA,
  author            = "Alyaa Mohammed and Nihad Tareq Khshain Al Saadi",
  title             = "Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents",
  doi               = "10.3390/polym12122900",
  year              = "2020",
  journal           = "Polymers",
  volume            = "12",
  number            = "12",
}
Formatted Citation

A. Mohammed and N. T. K. A. Saadi, “Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents”, Polymers, vol. 12, no. 12, 2020, doi: 10.3390/polym12122900.

Mohammed, Alyaa, and Nihad Tareq Khshain Al Saadi. “Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents”. Polymers 12, no. 12 (2020). https://doi.org/10.3390/polym12122900.