Thickness Optimisation in 3D Printed Concrete Structures (2025-03)¶
, Rosa Pedro,
Journal Article - Automation in Construction, Vol. 174, No. 106076
Abstract
Layer pressing in 3D concrete printing (3DCP) allows to continuously modify the thickness of printed laces by changing adequately the robot speed. However, most applications consider a constant thickness throughout the printing and do not leverage all the possibilities from robotic technologies. The aim of this paper is to demonstrate the potential offered by thickness variation to achieve higher structural efficiency and to lower the material usage. To do so, analytical solutions for stress and buckling of tapered heavy column are recalled and highlight a potential of reduction of 25% of material for simple geometries with materials with low structuration rate. Numerical optimisation based on a penalty method and on the finite element simulation with shell elements is then implemented to minimise the volume of printed components for more complex geometries. Promising results are observed and should encourage the 3DCP community to further study this previously unexplored dimension of the process.
¶
26 References
- Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
3D Concrete Printing for Sustainable and Economical Construction:
A Comparative Study - Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization - Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
Layer Pressing in Concrete Extrusion-Based 3D Printing:
Experiments and Analysis - Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
Additive Manufacturing of Cantilever:
From Masonry to Concrete 3D Printing - Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
Additive Manufacturing as an Enabling Technology for Digital Construction:
A Perspective on Construction 4.0 - Demont Léo, Mesnil Romain, Ducoulombier Nicolas, Caron Jean-François (2023-10)
Affordable In-Line Structuration Measurements of Printable Mortar with a Pocket-Shear-Vane - Diab Zeinab, Do Duc, Rémond Sébastien, Hoxha Dashnor (2023-04)
Probabilistic Prediction of Structural Failure During 3D Concrete Printing Processes - Ducoulombier Nicolas, Mesnil Romain, Carneau Paul, Demont Léo et al. (2021-05)
The “Slugs-Test” for Extrusion-Based Additive Manufacturing:
Protocol, Analysis and Practical Limits - Khan Shoukat, Koç Muammer (2022-10)
Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
The Underlying Physics, Potential, and Challenges - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Kuzmenko Kateryna, Ducoulombier Nicolas, Féraille Adélaïde, Roussel Nicolas (2022-05)
Environmental Impact of Extrusion-Based Additive Manufacturing:
Generic Model, Power-Measurements and Influence of Printing-Resolution - Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing - Mesnil Romain, Poussard Valentin, Sab Karam, Caron Jean-François (2022-11)
On the Geometrical Origin of the Anisotropy in Extrusion-Based 3D Printed Structures - Motamedi Mahan, Mesnil Romain, Tang Anh-Minh, Pereira Jean-Michel et al. (2024-11)
Structural Build-Up of 3D Printed Earth by Drying - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
3D Concrete Printing Modelling of Thin-Walled Structures - Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
Digital Design Computing and Modelling for 3D Concrete Printing - Ooms Ticho, Vantyghem Gieljan, Coile Ruben, Corte Wouter (2020-12)
A Parametric Modelling-Strategy for the Numerical Simulation of 3D Concrete Printing with Complex Geometries - Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
From Analytical Methods to Numerical Simulations:
A Process Engineering Toolbox for 3D Concrete Printing - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
Assessing the Fresh Properties of Printable Cement-Based Materials:
High-Potential Tests for Quality-Control - Roux Charlotte, Kuzmenko Kateryna, Roussel Nicolas, Mesnil Romain et al. (2022-11)
Life Cycle Assessment of a Concrete 3D Printing Process - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
Elastic Buckling and Plastic Collapse During 3D Concrete Printing - Vantyghem Gieljan, Ooms Ticho, Corte Wouter (2020-11)
VoxelPrint:
A Grasshopper Plug-In for Voxel-Based Numerical Simulation of Concrete Printing - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing
BibTeX
@article{mesn_rosa_demo.2025.TOi3PCS,
author = "Romain Mesnil and Pedro Sarkis Rosa and Léo Demont",
title = "Thickness Optimisation in 3D Printed Concrete Structures",
doi = "10.1016/j.autcon.2025.106076",
year = "2025",
journal = "Automation in Construction",
volume = "174",
pages = "106076",
}
Formatted Citation
R. Mesnil, P. S. Rosa and L. Demont, “Thickness Optimisation in 3D Printed Concrete Structures”, Automation in Construction, vol. 174, p. 106076, 2025, doi: 10.1016/j.autcon.2025.106076.
Mesnil, Romain, Pedro Sarkis Rosa, and Léo Demont. “Thickness Optimisation in 3D Printed Concrete Structures”. Automation in Construction 174 (2025): 106076. https://doi.org/10.1016/j.autcon.2025.106076.