Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders (2021-11)¶
Kondepudi Kala,
Journal Article - ACI Materials Journal, Vol. 118, Iss. 6, pp. 87-96
Abstract
Printable alkali-activated fly ash-slag mixtures, which are homogeneous under pressure and achieve buildability in the extrusion-based three-dimensonal (3D) layer printing process, are developed. A baseline mixture of fly ash and slag with a sodium hydroxide activator is modified to achieve extrusion-based printing requirements, including printability, shape retention, and buildability. The role of additional dry constituents such as microsilica and clay in reducing phase separation under pressure for producing printable mixtures is evaluated. Phase separation in the mixture under pressure is sensitive to the particle size distribution. Printable mixtures, which do not segregate under pressure, have a narrower distribution of particle sizes, indicated by the Rosin-Rammler fit. The link between the rheological behavior of the mixture and its performance in printing is evaluated. The constant strain rate rheological response of the mixtures is distinguished between the yield-type and Maxwell-flow behaviors. Mixtures that exhibit a Maxwell-flow type response produce a steadily continuing deformation and are not buildable. The distinction between Maxwell-flow and yield-type behaviors is essential for identifying buildable mixtures. Alkali-activated mixtures exhibit a viscoelastic response with both elastic and viscous components. The proportion of the storage to the loss modulus from rheological measurements provides an index of buildability. Achieving buildability with multiple layers depends on an internal structure capable of resisting elastic deformation, which is indicated by the development of the storage modulus with time. The role of additives on specific aspects of the rheological behavior of the mixtures is evaluated. The rheological behavior required for printing is achieved using carboxymethylcellulose (CMC), which produces a yield-type behavior, and enhances the storage modulus and thixotropy of the alkali-activated mixture.
¶
27 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
Freeform Construction:
Mega-Scale Rapid Manufacturing for Construction - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution - Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Jones Scott, Bentz Dale, Martys Nicos, George William et al. (2018-09)
Rheological Control of 3D Printable Cement-Paste and Mortars - Kashani Alireza, Ngo Tuan (2017-07)
Optimization of Mixture-Properties for 3D Printing of Geopolymer Concrete - Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
Mega-Scale Fabrication by Contour Crafting - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Perrot Arnaud, Mélinge Yannick, Rangeard Damien, Micaelli Francesca et al. (2012-06)
Use of Ram Extruder as a Combined Rheo-Tribometer to Study the Behavior of High-Yield-Stress Fluids at Low Strain-Rate - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Qian Ye, Schutter Geert (2018-06)
Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE) - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Skibicki Szymon, Kaszyńska Maria, Wahib Nawid, Techman Mateusz et al. (2020-07)
Properties of Composite Modified with Limestone-Powder for 3D Concrete Printing - Valente Marco, Sibai Abbas, Sambucci Matteo (2019-09)
Extrusion-Based Additive Manufacturing of Concrete Products:
Revolutionizing and Remodeling the Construction Industry - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing
4 Citations
- Kamakshi Tippabhotla, Thakur Manideep, Subramaniam Kolluru (2024-07)
Formulating Printable Concrete Mixtures Based on Paste-Rheology and Aggregate-Content:
Application to Alkali-Activated Binders - Kamakshi Tippabhotla, Subramaniam Kolluru (2024-05)
Rheology-Control and 3D Concrete Printing with Fly Ash-Based Aqueous Nano-Silica Enhanced Alkali-Activated Binders - Kamakshi Tippabhotla, Subramaniam Kolluru (2022-06)
Developing Printable Fly-Ash-Slag Geopolymer Binders with Rheology Modification - Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
3D Printable Alkali-Activated Concretes for Building Applications:
A Critical Review
BibTeX
@article{kond_subr.2021.EBTDPPoAAB,
author = "Kala Kondepudi and Kolluru V. L. Subramaniam",
title = "Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders",
doi = "10.14359/51733107",
year = "2021",
journal = "ACI Materials Journal",
volume = "118",
number = "6",
pages = "87--96",
}
Formatted Citation
K. Kondepudi and K. V. L. Subramaniam, “Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders”, ACI Materials Journal, vol. 118, no. 6, pp. 87–96, 2021, doi: 10.14359/51733107.
Kondepudi, Kala, and Kolluru V. L. Subramaniam. “Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders”. ACI Materials Journal 118, no. 6 (2021): 87–96. https://doi.org/10.14359/51733107.