Fiber Reinforcement Strategies in 3D Concrete Printing (2025-04)¶
10.1016/b978-0-443-29861-5.00032-9
Dabbaghisouraki Farshad, Tanhadoust Amin, Nehdi Moncef
Contribution - Digital Transformation in the Construction Industry, pp. 639-654
Abstract
The incorporation of six different types of fibers, including basalt, carbon, glass, polyethylene, polypropylene, and steel fibers, as one of the reinforcement strategies in 3D concrete printing (3DCP) is comprehensively investigated in this book chapter. It aims to discuss their impact on the mechanical properties and performance of 3DCP structures. Various aspects such as fiber types, lengths, orientations, and content, and their impact on the fresh and hardened properties of 3DCP, are covered. Furthermore, this chapter discusses the challenges associated with using these fibers in 3DCP processes, highlighting the advancements, limitations, and future research directions in this rapidly evolving field. The insights provided in this chapter serve as a valuable resource for researchers, engineers, and practitioners interested in enhancing the structural integrity and performance of 3DCP structures through fiber reinforcement strategies.
¶
31 References
- Ahmed Zeeshan, Bos Freek, Brunschot Maikel, Salet Theo (2020-02)
On-Demand Additive Manufacturing of Functionally Graded Concrete - Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Bai Gang, Wang Li, Wang Fang, Ma Guowei (2022-12)
Assessing Printing Synergism in a Dual 3D Printing System for Ultra-High-Performance Concrete In-Process Reinforced Cementitious Composite - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Breseghello Luca, Hajikarimian Hamed, Jørgensen Henrik, Naboni Roberto (2023-07)
3DLightBeam+:
Design, Simulation, and Testing of Carbon-Efficient Reinforced 3D Concrete Printed Beams - Cai Jingming, Sheng Zhaoliang, Wang Xiaoyi, Fang Yizhi et al. (2021-12)
Effect of Reinforcement-Configurations on the Flexural Behaviors of 3D Printed Fiber-Reinforced Cementitious Composite Beams - Chen Wei, Pan Jinlong, Zhu Binrong, Ma XiaoMeng et al. (2023-06)
Improving Mechanical Properties of 3D Printable One-Part Geopolymer Concrete with Steel-Fiber-Reinforcement - Claßen Martin, Ungermann Jan, Sharma Rahul (2020-05)
Additive Manufacturing of Reinforced Concrete:
Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Lauff Philipp, Pugacheva Polina, Rutzen Matthias, Weiss Ursula et al. (2021-11)
Evaluation of the Behavior of Carbon-Short-Fiber-Reinforced Concrete (CSFRC) Based on a Multi-Sensory Experimental Investigation and a Numerical Multi-Scale Approach - Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing - Liu Miao, Huang Yimiao, Wang Fang, Sun Junbo et al. (2021-05)
Tensile and Flexural Properties of 3D Printed Jackets-Reinforced Mortar - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schmeier Tobias (2020-06)
Extrusion-Based Additive Manufacturing with Carbon Reinforced Concrete:
Concept and Feasibility Study - Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar - Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads - Yang Rijiao, Zhu Yi, Lan Yan, Zeng Qiang et al. (2022-10)
Differences in Micro Grain & Fiber-Distributions Between Matrix and Inter-Layer of Cementitious Filaments Affected by Extrusion-Molding - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction - Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D
0 Citations
BibTeX
@inproceedings{dabb_tanh_nehd.2025.FRSi3CP,
author = "Farshad Dabbaghisouraki and Amin Tanhadoust and Moncef L. Nehdi",
title = "Fiber Reinforcement Strategies in 3D Concrete Printing: Addressing Challenges and Identifying Research Gaps",
doi = "10.1016/b978-0-443-29861-5.00032-9",
year = "2025",
pages = "639--654",
booktitle = "Digital Transformation in the Construction Industry",
}
Formatted Citation
F. Dabbaghisouraki, A. Tanhadoust and M. L. Nehdi, “Fiber Reinforcement Strategies in 3D Concrete Printing: Addressing Challenges and Identifying Research Gaps”, in Digital Transformation in the Construction Industry, 2025, pp. 639–654. doi: 10.1016/b978-0-443-29861-5.00032-9.
Dabbaghisouraki, Farshad, Amin Tanhadoust, and Moncef L. Nehdi. “Fiber Reinforcement Strategies in 3D Concrete Printing: Addressing Challenges and Identifying Research Gaps”. In Digital Transformation in the Construction Industry, 639–54, 2025. https://doi.org/10.1016/b978-0-443-29861-5.00032-9.