3D Concrete Printing in Kuwait (2024-12)¶
,
Journal Article - Sustainability, Vol. 17, Iss. 1, No. 200
Abstract
Robotic construction using three-dimensional (3D) concrete printing (3DCP) offers significant potential to transform Kuwait’s construction industry, particularly in reducing waste. This study explores the feasibility of integrating 3DCP into Kuwait’s construction waste management practices by examining the perspectives of key stakeholders. Through a mixed method approach of a comprehensive literature review, a survey of 87 industry professionals, and 33 in-depth interviews with representatives from the Public Authority for Housing Welfare (PAHW), Municipality, private sector, and the general public, the study identifies both the benefits and challenges of 3DCP adoption. The findings highlight key advantages of 3DCP, including increased construction efficiency, cost savings, enhanced design flexibility, and reduced material waste. However, several barriers, such as regulatory limitations, technical challenges in adapting 3DCP to local project scales, and cultural resistance, must be addressed. Results also indicate varying levels of stakeholder familiarity with 3DCP and existing waste management practices, underscoring the need for awareness and educational initiatives. This study makes two significant contributions: first, by providing a detailed analysis of the technical and regulatory challenges specific to Kuwait’s construction sector, and second, by offering a strategic roadmap for 3DCP integration, including regulatory reform, research into sustainable materials, and cross-sector collaboration. These recommendations aim to enhance waste management practices by promoting more sustainable and efficient construction methods by achieving SDGs 9, 11, 12, and 13. The study concludes that government support and policy development will be essential in driving the adoption of 3DCP and achieving long-term environmental benefits in Kuwait’s construction industry.
¶
28 References
- Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Anjum Taqdees, Dongre Poorvesh, Misbah Fozail, Nanyam V. (2017-06)
Purview of 3DP in the Indian Built Environment Sector - Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Chougan Mehdi, Ghaffar Seyed, Nematollahi Behzad, Sikora Paweł et al. (2022-09)
Effect of Natural and Calcined-Halloysite-Clay-Minerals as Low-Cost-Additives on the Performance of 3D Printed Alkali-Activated Materials - Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures - Cuevas Villalobos Karla, Strzałkowski Jarosław, Kim Ji-Su, Ehm Clemens et al. (2023-02)
Towards Development of Sustainable Lightweight 3D Printed Wall Building Envelopes:
Experimental and Numerical Studies - Deng Qi, Zou Shuai, Xi Yonghui, Singh Amardeep (2023-06)
Development and Characteristic of 3D Printable Mortar with Waste-Glass-Powder - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution - Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
Recent Developments and Challenges of 3D Printed Construction:
A Review of Research Fronts - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
Impact on 3D Printing Performance and Material-Properties - Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
Engineering, Environmental and Economic Feasibility - Şahin Hatice, Mardani Ali (2021-12)
Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
A State of the Art Review - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
A Critical Review of 3D Printing in Construction:
Benefits, Challenges, and Risks - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Skibicki Szymon, Federowicz Karol, Hoffmann Marcin, Chougan Mehdi et al. (2024-05)
Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy Towards Decreasing Cement Content in 3DPC - Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
Framework of 3D Concrete Printing Potential and Challenges - Tay Yi, Panda Biranchi, Ting Guan, Ahamed N. et al. (2020-10)
3D Printing for Sustainable Construction - Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials - Wang Qiang-Chen, Yu Si-Nan, Chen Zi-Xiao, Weng Yiwei et al. (2023-11)
Promoting Additive Construction in Fast-Developing Areas:
A Q-Methodology-Analysis of Stakeholder-Perspectives on Policy-Mixes - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Ziejewska Celina, Marczyk Joanna, Korniejenko Kinga, Bednarz Sebastian et al. (2022-04)
3D Printing of Concrete-Geopolymer Hybrids
2 Citations
- Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
A Bibliometric and Systematic Review - Okangba Stanley, Ngcobo Ntebo, Mahachi Jeffrey (2025-12)
Bridging Innovation and Governance:
A UTAUT-Based Mixed-Method Study of 3D Concrete Printing Technology Acceptance in South Africa
BibTeX
@article{raqe_ghaf.2025.3CPiK,
author = "Hanan Al Raqeb and Seyed Hamidreza Ghaffar",
title = "3D Concrete Printing in Kuwait: Stakeholder Insights for Sustainable Waste Management Solutions",
doi = "10.3390/su17010200",
year = "2025",
journal = "Sustainability",
volume = "17",
number = "1",
pages = "200",
}
Formatted Citation
H. A. Raqeb and S. H. Ghaffar, “3D Concrete Printing in Kuwait: Stakeholder Insights for Sustainable Waste Management Solutions”, Sustainability, vol. 17, no. 1, p. 200, 2025, doi: 10.3390/su17010200.
Raqeb, Hanan Al, and Seyed Hamidreza Ghaffar. “3D Concrete Printing in Kuwait: Stakeholder Insights for Sustainable Waste Management Solutions”. Sustainability 17, no. 1 (2025): 200. https://doi.org/10.3390/su17010200.