Developing a Data-Driven Filament-Shape-Prediction-Model for 3D Concrete Printing (2024-02)¶
Alhussain Ali, ,
Journal Article - Frontiers in Built Environment, Vol. 10
Abstract
With the growing global need for housing and infrastructure, 3D concrete printing (3DCP) has emerged as an innovative construction method offering several potential benefits including design flexibility, speed, and sustainability. However, enhancing the reliability of 3DCP involves managing a variety of parameters that influence various aspects of the 3D printed structure. Process parameters like nozzle velocity, nozzle diameter, nozzle height, and material flow velocity have a major impact on the structural stability and filament shape. This project aimed to develop fast and accurate data-driven models for predicting and classifying filament shape based on process parameters. A print experiment systematically varied process parameters across 144 samples. The resulting filament geometry (width, height, contact width) was measured and classified by quality. Models were trained on this data to predict filament width, contact width, filament height, and classify filaments. These models can be utilized with any buildable material - a material with a high enough yield stress to bear the weight of upper layers without significant deformation. This condition does not restrict this study’s scope as it is a prerequisite for all 3DCP applications. The models’ robustness and generalizability were confirmed through validation on literature data across various printable materials and setups. These data-driven models can aid in optimizing parameters, generating variable width filaments, and printing non-planar layers. By linking print inputs to filament outputs, this comprehensive modeling approach advances 3DCP research for more reliable and versatile concrete printing.
¶
27 References
- Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2020-10)
Experimental Prediction of Material-Deformation in Large-Scale Additive Manufacturing of Concrete - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Breseghello Luca, Naboni Roberto (2021-07)
Adaptive Tool-Path:
Enhanced Design and Process-Control for Robotic 3DCP - Breseghello Luca, Naboni Roberto (2022-05)
Tool-Path -Based Design for 3D Concrete Printing of Carbon-Efficient Architectural Structures - Carneau Paul, Mesnil Romain, Baverel Olivier, Roussel Nicolas (2022-03)
Layer Pressing in Concrete Extrusion-Based 3D Printing:
Experiments and Analysis - Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-10)
Modelling of 3D Concrete Printing Based on Computational Fluid Dynamics - He Lewei, Chow Wai, Li Hua (2020-06)
Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste - Khan Shoukat, Koç Muammer (2022-10)
Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
The Underlying Physics, Potential, and Challenges - Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Pan Tinghong, Guo Rongxin, Jiang Yaqing, Ji Xuping (2022-07)
How Do the Contact Surface Forces Affect the Inter-Layer Bond Strength of 3D Printed Mortar? - Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
From Analytical Methods to Numerical Simulations:
A Process Engineering Toolbox for 3D Concrete Printing - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Roussel Nicolas, Spangenberg Jon, Wallevik Jon, Wolfs Robert (2020-06)
Numerical Simulations of Concrete Processing:
From Standard Formative Casting to Additive Manufacturing - Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
A Critical Review of 3D Printing in Construction:
Benefits, Challenges, and Risks - Spangenberg Jon, Silva Wilson, Comminal Raphaël, Mollah Md. et al. (2021-10)
Numerical Simulation of Multi-Layer 3D Concrete Printing - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters - Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
3D Printing Trends in Building and Construction Industry:
A Review - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Wolfs Robert, Salet Theo, Roussel Nicolas (2021-10)
Filament-Geometry-Control in Extrusion-Based Additive Manufacturing of Concrete:
The Good, the Bad and the Ugly - Yuan Philip, Zhan Qiang, Wu Hao, Beh Hooi et al. (2021-11)
Real-Time Tool-Path-Planning and Extrusion-Control-Method for Variable-Width 3D Concrete Printing - Zhang Nan, Sanjayan Jay (2023-01)
Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing
4 Citations
- Aroso Francisca, Reis Rui, Brandão Filipe, Figueiredo Bruno et al. (2026-01)
Assessing Orthotropic Mechanical Performance and Digital Twin of Robotic 3D Printed Cementitious Mortars with Fibers and Metal Reinforcements - Deetman Arjen, Bos Derk, Lucas Sandra, Salet Theo et al. (2025-12)
A Database Framework for 3D Concrete Printing - Kontovourkis Odysseas, Georgiou Christos, Andreou Alexis, Andreou Vasilis et al. (2025-06)
Measuring and Evaluating Layer Height to Width Ratio in 3DCP Towards Higher Geometric Conformity - Duarte Gonçalo, Brown Nathan, Duarte José (2024-07)
Workflow for Generating, Simulating, and Optimizing Form and Tool-Path in 3D Concrete Printing of Vaults
BibTeX
@article{alhu_duar_brow.2024.DaDDFSPMf3CP,
author = "Ali Alhussain and José Pinto Duarte and Nathan C. Brown",
title = "Developing a Data-Driven Filament-Shape-Prediction-Model for 3D Concrete Printing",
doi = "10.3389/fbuil.2024.1363370",
year = "2024",
journal = "Frontiers in Built Environment",
volume = "10",
}
Formatted Citation
A. Alhussain, J. P. Duarte and N. C. Brown, “Developing a Data-Driven Filament-Shape-Prediction-Model for 3D Concrete Printing”, Frontiers in Built Environment, vol. 10, 2024, doi: 10.3389/fbuil.2024.1363370.
Alhussain, Ali, José Pinto Duarte, and Nathan C. Brown. “Developing a Data-Driven Filament-Shape-Prediction-Model for 3D Concrete Printing”. Frontiers in Built Environment 10 (2024). https://doi.org/10.3389/fbuil.2024.1363370.