Skip to content

Preparation of 3D Printed Concrete from Solid Waste (2024-10)

Study of the Relationship Between Steel-Slag Characteristics and Early Performance in 3D Printing

10.1061/jmcee7.mteng-18411

Zhao Wanting, Zhao Yu, Zhu Lingli,  Guan Xuemao
Journal Article - Journal of Materials in Civil Engineering, Vol. 36, Iss. 12

Abstract

Using steel slag in architectural three-dimensional (3D) printing not only enhances its utilization efficiency but also significantly reduces cement consumption, thereby mitigating carbon emissions. This study evaluated the substitution of steel slag for cement in 3D printing and examined its impact on rheological properties, fluidity, green strength, and early hydration microstructure based on alkalinity level, particle-size distribution, and blending quantity. The relationship between the early properties of 3D-printed steel slag cementitious materials and their pore microstructures was investigated using low-field nuclear magnetic resonance (NMR) tests. The results showed that high-alkalinity steel slag has superior rheological characteristics and generates a larger amount of gel water within the initial 30 min of hydration. Steel slag particles ranging from 5 to 20  μm had the most significant influence on enhancing the rheological properties of 3D-printed steel slag cementitious materials by facilitating the formation of a flocculated mesh structure during early hydration. Optimal rheological performance was achieved with a dosage level of 10% steel slag, effectively reducing porosity and improving compactness in the mortar.

15 References

  1. Ahi Oğulcan, Ertunç Özgür, Bundur Zeynep, Bebek Özkan (2024-02)
    Automated Flow-Rate-Control of Extrusion for 3D Concrete Printing Incorporating Rheological Parameters
  2. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  3. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  4. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  5. Dai Shuo, Zhu Huajun, Zhai Munan, Wu Qisheng et al. (2021-06)
    Stability of Steel-Slag as Fine Aggregate and Its Application in 3D Printing Materials
  6. Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
    Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer
  7. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  8. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  9. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  10. Rollakanti Chiranjeevi, Prasad C. (2022-04)
    Applications, Performance, Challenges and Current Progress of 3D Concrete Printing Technologies as the Future of Sustainable Construction:
    A State of the Art Review
  11. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  12. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  13. Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
    Life Cycle Assessment of 3D Printing Geopolymer Concrete:
    An Ex‐Ante Study
  14. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  15. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites

1 Citations

  1. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability

BibTeX
@article{zhao_zhao_zhu_guan.2024.Po3PCfSW,
  author            = "Wanting Zhao and Yu Zhao and Lingli Zhu and Xuemao Guan",
  title             = "Preparation of 3D Printed Concrete from Solid Waste: Study of the Relationship Between Steel-Slag Characteristics and Early Performance in 3D Printing",
  doi               = "10.1061/jmcee7.mteng-18411",
  year              = "2024",
  journal           = "Journal of Materials in Civil Engineering",
  volume            = "36",
  number            = "12",
}
Formatted Citation

W. Zhao, Y. Zhao, L. Zhu and X. Guan, “Preparation of 3D Printed Concrete from Solid Waste: Study of the Relationship Between Steel-Slag Characteristics and Early Performance in 3D Printing”, Journal of Materials in Civil Engineering, vol. 36, no. 12, 2024, doi: 10.1061/jmcee7.mteng-18411.

Zhao, Wanting, Yu Zhao, Lingli Zhu, and Xuemao Guan. “Preparation of 3D Printed Concrete from Solid Waste: Study of the Relationship Between Steel-Slag Characteristics and Early Performance in 3D Printing”. Journal of Materials in Civil Engineering 36, no. 12 (2024). https://doi.org/10.1061/jmcee7.mteng-18411.