Finite-Element Modeling of Reinforced Additively Constructed Concrete Structures (2023-10)¶
, , , ,
Journal Article - Journal of Structural Engineering, Vol. 149, Iss. 12
Abstract
As additive construction technologies evolve, the US Army Engineer Research and Development Center has studied the functionality and structural integrity of structures produced using additive construction methodologies. Compared with precast construction, additive construction has multiple advantages including unique geometries, reduction of worker power, no required formwork, and ability to use locally sourced materials. The purpose of this study is to evaluate additively-constructed concrete structures and compare it with conventional construction methods. Static analyses are performed using finite-element modeling on several precast concrete beams and compared with experimental data. A finite-element model was created for additively-constructed beams by incorporating cohesive interaction properties to evaluate the interface strength between three-dimensional (3D) printed layers. To further validate the model, an additively-constructed concrete wall is also experimentally tested and compared with models. Numerical predictions are developed to explore damage caused by interfaces of additively-constructed structures and its effects on the structural performance. Maximum deflections and peak loads were also obtained for the conventional construction method experimentally with finite-element models.
¶
32 References
- Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Diggs-McGee Brandy, Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Print Time vs. Elapsed Time:
A Temporal Analysis of a Continuous Printing Operation for Additive Constructed Concrete - Hass Lauri, Bos Freek (2020-07)
Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Jiramarootapong Patiphat, Prasittisopin Lapyote, Snguanyat Chalermwut, Tanapornraweekit Ganchai et al. (2020-07)
Load Carrying Capacity and Failure Mode of 3D Printing Mortar Wall Panel Under Axial Compression Loading - Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
Buildability and Mechanical Properties of 3D Printed Concrete - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Kinomura Koji, Murata Satoshi, Yamamoto Yujin, Obi Hirotoshi et al. (2020-07)
Application of 3D Printed Segments Designed by Topology-Optimization-Analysis to a Practical-Scale Pre-Stressed Pedestrian Bridge - Kreiger Eric, Diggs-McGee Brandy, Wood Tanner, MacAllister Bruce et al. (2020-07)
Field Considerations for Deploying Additive Construction - Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
Development of the Construction Processes for Reinforced Additively Constructed Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
A Review - Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete - Meurer Maximilian, Claßen Martin (2021-02)
Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
Development of a Consistent Experimental Characterization-Strategy - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar (2019-01)
Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry - Stidwell Samuel, Kreiger Eric (2021-12)
Determination of Mechanical Properties of Additively Constructed Concrete Based on Specimen-Orientation - Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
Elastic Buckling and Plastic Collapse During 3D Concrete Printing - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization - Vantyghem Gieljan, Steeman Marijke, Corte Wouter, Boel Veerle (2020-07)
Design-Optimization for 3D Concrete Printing:
Improving Structural and Thermal Performances - Weger Daniel, Stengel Thorsten, Gehlen Christoph, Maciejewski Yannick et al. (2021-12)
Approval for the Construction of the First 3D Printed Detached House in Germany:
Significance of Large-Scale Element Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Suiker Akke (2019-06)
Structural Failure During Extrusion-Based 3D Printing Processes - Zareiyan Babak, Khoshnevis Behrokh (2017-06)
Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
4 Citations
- Wang Hailong, Shi Yiqing, Sun Xiaoyan, Lin Xiqiang et al. (2025-12)
Design, Multi-Scale Structural Analysis, and Construction of Modular Prefabricated 3D-Printed Concrete Residence - Syed Mohammad, Sharma Sumedh, Koliou Maria, Sideris Petros (2025-08)
Economic Analysis of 3D-Printed Hempcrete Buildings - Mukhtar Faisal (2025-05)
3D-Printed Concrete Fracture:
Effects of Cohesive Laws, Mixes, and Print Parameters in 3D EXtended FEM - Sharma Shivam, Tahlawi M., Delavar Mohammad, Sideris Petros (2025-03)
Structural Design Methodology for Low-Rise 3D Printed Concrete (3DPC) Buildings Subjected to Non-Seismic Loading:
Description, Application and Validation
BibTeX
@article{pere_krei_stid_styn.2023.FEMoRACCS,
author = "Anthony Perez-Rivera and Eric L. Kreiger and Samuel Stidwell and Peter B. Stynoski and Megan A. Kreiger",
title = "Finite-Element Modeling of Reinforced Additively Constructed Concrete Structures",
doi = "10.1061/jsendh.steng-12324",
year = "2023",
journal = "Journal of Structural Engineering",
volume = "149",
number = "12",
}
Formatted Citation
A. Perez-Rivera, E. L. Kreiger, S. Stidwell, P. B. Stynoski and M. A. Kreiger, “Finite-Element Modeling of Reinforced Additively Constructed Concrete Structures”, Journal of Structural Engineering, vol. 149, no. 12, 2023, doi: 10.1061/jsendh.steng-12324.
Perez-Rivera, Anthony, Eric L. Kreiger, Samuel Stidwell, Peter B. Stynoski, and Megan A. Kreiger. “Finite-Element Modeling of Reinforced Additively Constructed Concrete Structures”. Journal of Structural Engineering 149, no. 12 (2023). https://doi.org/10.1061/jsendh.steng-12324.