Effect of Spherical Electric Arc Slag on Solid Waste-Based 3D-Printed Concrete (2025-11)¶
Lu Qi, , Yue Hongfei
Journal Article - Applied Sciences, Vol. 15, Iss. 22, No. 11933
Abstract
Three-dimensional-printed concrete (3DPC) is an additive manufacturing technology that forms 3D solids via layer-by-layer printing based on 3D model data, but it consumes large amounts of river sand (RS) and has poor frost resistance. To address these issues, this study used industrial waste electric arc furnace slag (EAFS) as an aggregate at 0–100% replacement ratios to test the workability, mechanical properties, frost resistance, and microstructures of 3DPC specimens. The results show that EAFS improves mortar flowability and extends the printing window, but full replacement increases slump and reduces constructability. The stress dispersion and dense packing effects of EAFS ensure excellent mechanical properties of specimens before and after freeze–thaw cycles. At an 80% EAFS replacement ratio, compressive and flexural strengths increase by 2.52%/13.8% and 10.6%/18.2%, respectively; after freeze–thaw cycles, the specimens exhibit the best frost resistance. The interfacial transition zone between EAFS and cement matrix is only 2 μm, with 1.8% lower porosity and 20.14% fewer harmful pores than the 100% RS specimen after freeze–thaw cycles. In conclusion, 80% EAFS replacement balances 3DPC performance and solid waste utilization, providing important references for EAFS’s safe application in 3DPC and its performance improvement mechanism.
¶
13 References
- Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Chen Mingxu, Guo Xiangyang, Zheng Yan, Li Laibo et al. (2018-11)
Effect of Tartaric Acid on the Printable, Rheological and Mechanical Properties of 3D Printing Sulphoaluminate Cement-Paste - Dong Wei, Wang Junfeng, Hang Meiyan, Qu Shuqiang (2024-01)
Research on Printing Parameters and Salt-Frost-Resistance of 3D Printing Concrete with Ferrochrome-Slag and Aeolian Sand - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Liu Chao, Liu Huawei, Wu Yiwen, Wu Jian et al. (2025-02)
Effect of X-Ray CT Characterized Pore Structure on the Freeze-Thaw Resistance of 3D Printed Concrete with Recycled Coarse Aggregate - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Skibicki Szymon, Pułtorak Monika, Kaszyńska Maria, Hoffmann Marcin et al. (2022-04)
The Effect of Using Recycled PET-Aggregates on Mechanical and Durability Properties of 3D Printed Mortar - Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand - Yue Hongfei, Hua Sudong, Qian Hao, Yao Xiao et al. (2021-12)
Investigation on Applicability of Spherical Electric Arc-Furnace-Slag as Fine Aggregate in Superplasticizer-Free 3D Printed Concrete - Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials - Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings - Zhou Yuecheng, Xiao Sai, Li Haonian, Wang Chong et al. (2025-08)
Study on the Rheological Properties and Printability of Multi-Scale Material Modified Mortar for 3D Printing
0 Citations
BibTeX
@article{lu_hua_yue.2025.EoSEASoSWB3PC,
author = "Qi Lu and Sudong Hua and Hongfei Yue",
title = "Effect of Spherical Electric Arc Slag on Solid Waste-Based 3D-Printed Concrete",
doi = "10.3390/app152211933",
year = "2025",
journal = "Applied Sciences",
volume = "15",
number = "22",
pages = "11933",
}
Formatted Citation
Q. Lu, S. Hua and H. Yue, “Effect of Spherical Electric Arc Slag on Solid Waste-Based 3D-Printed Concrete”, Applied Sciences, vol. 15, no. 22, p. 11933, 2025, doi: 10.3390/app152211933.
Lu, Qi, Sudong Hua, and Hongfei Yue. “Effect of Spherical Electric Arc Slag on Solid Waste-Based 3D-Printed Concrete”. Applied Sciences 15, no. 22 (2025): 11933. https://doi.org/10.3390/app152211933.