Skip to content

Developing Low-pH 3D Printing Concrete Using Solid Wastes (2023-02)

10.3390/buildings13020454

Li Xiao-Sheng,  Li Long,  Zou Shuai
Journal Article - Buildings, Vol. 13, Iss. 2

Abstract

Three-dimensional concrete printing technology provides the possibility to fabricate specific and eco-friendly concrete components for application on shorelines or in other areas, providing environmental protection. In this study, solid wastes in Hong Kong are employed for low-pH 3D printing concrete to further decrease the impact on the environment. The results indicate that WGP replacement in a classic low-pH recipe leads to lower yield stress and surface pH, as well as volume stability. The employment of slag improves workability and printability, but maintains the surface pH and drying shrinkage. The printing height is not merely determined by slump flow, and contributions from every binder on the surface pH are quantified based on simplified calculations. Reducing OPC and increasing SF in the classic low-pH recipe achieves the best printing performance and improved environmental friendliness.

22 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  4. Daher Jana, Kleib Joelle, Benzerzour Mahfoud, Abriak Nor-Edine et al. (2022-09)
    Recycling of Flash-Calcined Dredged Sediment for Concrete 3D Printing
  5. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  6. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  7. Ki Dongwon, Kang Shin, Park Kwang-Min (2021-07)
    Upcycling of Wastewater Sludge Incineration Ash as a 3D Printing Technology Resource
  8. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  9. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  10. Melichar Jindřich, Žižková Nikol, Brožovský Jiří, Mészárosová Lenka et al. (2022-11)
    Study of the Interaction of Cement-Based Materials for 3D Printing with Fly-Ash and Superabsorbent Polymers
  11. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  12. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
    Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures
  13. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  14. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  15. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  16. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  17. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  18. Wang Bolin, Zhai Mingang, Yao Xiaofei, Wu Qing et al. (2022-03)
    Printable and Mechanical Performance of 3D Printed Concrete Employing Multiple Industrial Wastes
  19. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  20. Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
    3D Recycled Mortar Printing:
    System-Development, Process-Design, Material-Properties and On-Site-Printing
  21. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  22. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing

3 Citations

  1. Srinivas Dodda, Panda Biranchi, Suraneni Prannoy, Sitharam Thallak (2025-06)
    Mix Design Optimization of 3D-Printed Cementitious Composites for Marine Applications:
    Impact of Binder Composition, Accelerated Carbonation, and PVA Fibers on Strength and Durability
  2. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  3. Aslani Farhad, Zhang Yifan (2024-06)
    Sustainable 3D Printed Concrete Structures Using High-Quality Secondary Raw Materials

BibTeX
@article{li_li_zou.2023.DLp3PCUSW,
  author            = "Xiao-Sheng Li and Long Li and Shuai Zou",
  title             = "Developing Low-pH 3D Printing Concrete Using Solid Wastes",
  doi               = "10.3390/buildings13020454",
  year              = "2023",
  journal           = "Buildings",
  volume            = "13",
  number            = "2",
}
Formatted Citation

X.-S. Li, L. Li and S. Zou, “Developing Low-pH 3D Printing Concrete Using Solid Wastes”, Buildings, vol. 13, no. 2, 2023, doi: 10.3390/buildings13020454.

Li, Xiao-Sheng, Long Li, and Shuai Zou. “Developing Low-pH 3D Printing Concrete Using Solid Wastes”. Buildings 13, no. 2 (2023). https://doi.org/10.3390/buildings13020454.