Skip to content

Experimental Study on 3D Printing of Concrete with Overhangs (2020-07)

10.1007/978-3-030-49916-7_77

Brun Francis,  Gaspar Florindo, Mateus Artur, Vitorino João, Diz Francisco
Contribution - Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication, pp. 778-789

Abstract

The construction industry has been receiving in the recent past years the 3D printing technology as an emerging technology. Several researchers and companies have been reporting a number of case studies that show the possibilities of this technology regarding the dimensions, shape, building time, finishing and the material characteristics. It is commonly accepted that one of the big advantages of 3D printing is its possibility regarding the shape of the printed object since it can be easily changed each time a new piece is printed. This possibility raises some challenges regarding the printing limits, that are needed to the project design, such as to create overhangs. In this sense, a work was carried out to evaluate and optimize concrete printing mixtures and assess the 3D concrete printing of elements with overhangs. This paper presents the work carried out, showing the optimization of mixture composition for the binder/aggregate ratio, cement/fly ash ratio, and amount of superplasticizer and hardening accelerator, and evaluating their printing performance and mechanical properties. Printing of overhangs was possible for angles with the vertical direction till 17.5º.

12 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  4. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  5. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  6. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  7. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  8. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  9. Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
    Development of a Viable Concrete Printing Process
  10. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  11. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  12. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing

11 Citations

  1. Lin Wenyu, Wang Li, Li Zhijian, Bai Gang et al. (2025-06)
    Multi-Scale Fabrication and Challenges in 3D Printing of Special -Shaped Concrete Structures
  2. Kamhawi Abdallah, Meibodi Mania (2024-09)
    Techniques and Strategies in Extrusion-Based 3D Concrete Printing of Complex Components to Prevent Premature Failure
  3. Ting Guan, Tay Yi, Quah Tan, Tan Ming et al. (2024-09)
    Sustainable Support-Material for Overhang Printing in 3D Concrete Printing Technology
  4. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  5. Christ Julian, Leusnik Sander, Koss Holger (2023-10)
    Multi-Axial 3D Printing of Biopolymer-Based Concrete Composites in Construction
  6. Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
    A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
    Engineering, Environmental and Economic Feasibility
  7. Muthumanickam Naveen, Duarte José, Nazarian Shadi, Bilén Sven (2022-04)
    Metamodels for Rapid Analysis of Large Sets of Building Designs for Robotic Constructability:
    Technology Demonstration Using the NASA 3D Printed Mars Habitat Challenge
  8. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  9. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  10. Hoffmann Marcin, Żarkiewicz Krzysztof, Zieliński Adam, Skibicki Szymon et al. (2021-05)
    Foundation Piles:
    A New Feature for Concrete 3D Printers
  11. Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
    Digital Design Computing and Modelling for 3D Concrete Printing

BibTeX
@inproceedings{brun_gasp_mate_vito.2020.ESo3PoCwO,
  author            = "Francis Brun and Florindo Gaspar and Artur Mateus and João Vitorino and Francisco Diz",
  title             = "Experimental Study on 3D Printing of Concrete with Overhangs",
  doi               = "10.1007/978-3-030-49916-7_77",
  year              = "2020",
  volume            = "28",
  pages             = "778--789",
  booktitle         = "Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020",
  editor            = "Freek Paul Bos and Sandra Simaria de Oliveira Lucas and Robert Johannes Maria Wolfs and Theo A. M. Salet",
}
Formatted Citation

F. Brun, F. Gaspar, A. Mateus, J. Vitorino and F. Diz, “Experimental Study on 3D Printing of Concrete with Overhangs”, in Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, 2020, vol. 28, pp. 778–789. doi: 10.1007/978-3-030-49916-7_77.

Brun, Francis, Florindo Gaspar, Artur Mateus, João Vitorino, and Francisco Diz. “Experimental Study on 3D Printing of Concrete with Overhangs”. In Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, edited by Freek Paul Bos, Sandra Simaria de Oliveira Lucas, Robert Johannes Maria Wolfs, and Theo A. M. Salet, 28:778–89, 2020. https://doi.org/10.1007/978-3-030-49916-7_77.